
Journal of Network and Computer Applications 65 (2016) 48–71
Contents lists available at ScienceDirect
Journal of Network and Computer Applications
http://d
1084-80

n Corr
E-m

lluis.pam
journal homepage: www.elsevier.com/locate/jnca
The power of swarming in personal clouds under bandwidth budget

Rahma Chaabouni a,n, Marc Sánchez-Artigas a, Pedro García-López a, Lluís Pàmies-Juàrez b

a Universitat Rovira i Virgili, Tarragona, Spain
b HGST Research, United States
a r t i c l e i n f o

Article history:
Received 25 May 2015
Received in revised form
27 November 2015
Accepted 7 February 2016
Available online 18 February 2016

Keywords:
BitTorrent
Peer-assisted content distribution
Personal clouds
Bandwidth allocation
x.doi.org/10.1016/j.jnca.2016.02.006
45/& 2016 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: rahma.chaabouni@urv.cat (R. Ch
ies-juarez@hgst.com (L. Pàmies-Juàrez).
a b s t r a c t

Users are unceasingly relying on personal clouds (like Dropbox, Box, etc) to store, edit and retrieve their files
stored in remote servers. These systems generally follow a client–server model to distribute the files to end-
users. This means that they require a huge amount of bandwidth to meet the requirements of their clients.
Personal clouds with limited bandwidth budget can benefit from the upload speed of the clients interested in
the same content to improve the quality of service. This can be done by introducing a peer-to-peer protocol,
BitTorrent for instance, when the load on a certain content becomes high. The main challenge is to decide
when to switch to BitTorrent and how to allocate the cloud's available bandwidth to the different clients. In this
paper, we propose an algorithm for the allocation of the cloud's bandwidth. Based on the current load and the
predefined quality of service constraints, the algorithm identifies the most suitable protocol for each swarm
and provides the corresponding bandwidth allocation. We validate the algorithm using a real trace of the
Ubuntu One system and the results show important gains in the download times experienced by the clients.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays, users are unceasingly relying on cloud storage services (like Dropbox, Google Drive or Box, etc) to store, edit and retrieve
their data stored in remote servers and which can be accessed all over the Internet. Such systems are hosted by cloud-based datacenters
spread all over the world and are generally equipped with a set of features that allow sharing and collaboration between the users. That is
why these popular applications account for a major share of Internet traffic today (Drago, 2013).

Small andmedium-sized personal clouds with limited budget constraints generally have fixed amount of bandwidth. This bandwidth is shared
by all the concurrent active end-users, which might jeopardize the overall quality of service especially when the demand becomes high. As a
matter of fact, these systems are based on a client–server architecture and the default content distribution protocol is usually HTTP or HTTPS. This
means that all download requests are handled by a central entity which sends the requested content in a single stream. Unfortunately, such
transfer is limited by the narrowest network condition along the way, or by the server being overloaded by requests from many clients.

To cope with these limitations, the cloud can benefit from the clients' upload capacities to overcome its bandwidth limits. This can be
done by using the BitTorrent protocol (Cohen, 2003) to distribute the files that are shared between a set of devices. In such scenarios, it is
possible to benefit from the common interest of users in the same file and use their own upload bandwidth to offload the cloud from doing
all the serving. However, the use of BitTorrent may incur a longer download time compared to HTTP especially for small files (Chaabouni
et al., 2014). The main challenge is to decide for each swarm which approach is more suitable for transferring the requested files (client-
server or peer-assisted), and how much cloud bandwidth should be allocated to each swarm.

In this paper, we study the relationship between the cloud bandwidth allocated to a swarm of clients and the resulting download time for
the end-users. We also propose a bandwidth allocation and protocol decision algorithm that evaluates for each swarm the most suitable
protocol and returns the amount of bandwidth to be allocated, based on the current load on the cloud. Our key contributions are as follows:

� We analyze the relationship between the amount of cloud bandwidth allocated to a given swarm and the resulting download time.
Based on a fixed quality of service constraint, we calculate the amount of seed bandwidth needed to ensure a given ratio between the
download times in HTTP and BitTorrent.
aabouni), marc.sanchez@urv.cat (M. Sánchez-Artigas), pedro.garcia@urv.cat (P. García-López),

www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2016.02.006
http://dx.doi.org/10.1016/j.jnca.2016.02.006
http://dx.doi.org/10.1016/j.jnca.2016.02.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.02.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.02.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.02.006&domain=pdf
mailto:rahma.chaabouni@urv.cat
mailto:marc.sanchez@urv.cat
mailto:pedro.garcia@urv.cat
mailto:lluis.pamies-juarez@hgst.com
http://dx.doi.org/10.1016/j.jnca.2016.02.006


R. Chaabouni et al. / Journal of Network and Computer Applications 65 (2016) 48–71 49
� We propose a dynamic algorithm which uses simple parameters that can be collected by the system and evaluates the efficacy of using HTTP
and BitTorrent as a distribution protocol for each requested file. Based on the load on the cloud and the predefined switching constraints, the
algorithms decides the most suitable protocol for each case and provides the corresponding bandwidth allocations at the swarm level. This
algorithm can be applied in cloud-based content distribution systems to achieve important improvements in the overall quality of service.

� We evaluate the efficiency of our proposal using two simulators. The first simulates the default behavior of the cloud where each
download operation is treated individually and the content is delivered using HTTP. The second simulator simulates the bandwidth
distribution and switching algorithm where BitTorrent can be used along with HTTP to distribute content. We validate both approaches
using a real trace of the Ubuntu One1 system: we vary the switching constrains and the cloud upload speed limits and measure the
degree of improvement in download time of the involved clients using our algorithm (BitTorrent and HTTP together) compared to the
use of HTTP alone. The results show important improvements in the download time experienced by the peers.

The remainder of this paper is organized as follows: first, we discuss related work in Section 2 and present some background on BitTorrent
and personal clouds in Section 3. Second, we present the architecture of our personal cloud system and highlights the main differences
compared to the classic personal clouds in Section 4. In Section 5, we state the bandwidth allocation problem and propose an algorithm to solve
it. The algorithm is evaluated later in Section 6 using a trace of a real personal cloud system. Finally, Section 7 concludes the paper.
2. Related work

Various related works focus on how to efficiently distribute content to a set of users, from classical content distribution networks
(CDNs) to online, multicast streaming of live content. Peer-to-peer is considered one of the technologies that has proven its efficiency in
reducing the load on the servers and improving the distribution time of the clients (Karagiannis et al., 2005). BitTorrent (Cohen, 2003) is
one of the peer-to-peer protocols that has attracted the researchers' attention and several studies were dedicated to the analysis, modeling
and measurements of the BitTorrent ecosystem (Qiu and Srikant, 2004; Izal et al., 2004; Pouwelse et al., 2005; Piatek et al., 2007).

BitTorrent was also introduced in cloud environments and many previous works have focused on reducing download times for large
contents using BitTorrent in cloud settings. BitTorrent has proven its efficiency not only for bulk synchronous content distribution (Sweha
et al., 2011), but also for reducing transfer times for cloud virtual images (Wartel et al., 2010; Schmidt et al., 2010; Reich et al., 2010). For
example, in Reich et al. (2010), authors demonstrate that their BitTorrent-based solution for distributing virtual machines delivers up to an
30� speedup over traditional remote file system approaches.

In this paper, we tackle the problem of the efficient distribution of the files to end-user in personal cloud systems. These systems have
become very popular lately and there have been important works related to the benchmark and design of these services (Drago et al.,
2012, 2013; Gracia-Tinedo et al., 2013; Garcia-Lopez et al., 2014; Tinedo et al., 2015). To the best of our knowledge, we were the first to
propose to use both HTTP and BitTorrent together in cloud systems (Chaabouni et al., 2013, 2014).

In Chaabouni et al. (2013), we introduced the idea of transparent switching from HTTP to BitTorrent upon detection of a certain critical mass
demand on a specific content. The threshold was placed on the number of users requesting the same files. The system tested with each new request
whether the current number of requesters of the corresponding file passed the predefined threshold or not. When the threshold was reached, the
system decided to adopt BitTorrent instead of HTTP in order to avoid bottlenecks on the one hand, and to save cloud bandwidth on the other hand.

In Chaabouni et al. (2014), we investigated further the threshold at which the system should switch from HTTP to BitTorrent. Instead of
placing a static condition on the number of peers requesting the same file, we elaborated a complete analysis and experimental evaluation
of a dynamic threshold that takes into consideration not only the number of peers, but also their corresponding bandwidths and the size
of the shared file. With recourse to previous studies related to the study of HTTP and BitTorrent protocols (Qiu and Srikant, 2004; Wei
et al., 2005; Kumar and Ross, 2006; Carbunaru et al., 2014), we proposed accurate estimations of the download times in both protocols and
introduced some evaluation metrics to evaluate the efficiency of each of them. These metrics provide accurate estimations of the gain in
download time and the amount of data contributed by the peers.

This paper differs from Chaabouni et al. (2014) in that it considers personal clouds with a fixed bandwidth budget constraint. Various
related works focused on the allocation of the seed's bandwidth within the BitTorrent swarms when the bandwidth budget is limited
(Leon et al., 2014; Peterson and Sirer, 2009; Sharma et al., 2014). However, we believe we are the first to propose an algorithm that
manages to distribute the limited cloud bandwidth between the different sets of swarms each downloading the requested content using
one of two possible download protocols: HTTP and BitTorrent.
3. Background

In this section, we start by exposing some detailing about the BitTorrent protocol. Later, we propose a definition of personal clouds and
detail the general architecture of these systems.

3.1. The BitTorrent protocol

BitTorrent (Cohen, 2003) is a peer-to-peer protocol whose goal is to facilitate fast downloads of files by taking advantage of the upload
bandwidth of the peers. A user who wants to share a certain content via BitTorrent has to generate first a .torrent file that contains the
related meta-data information and a link to a tracker. A tracker is a server that assists in the communication between peers interested in
the same content. After the generation of the meta-data file, the user has to make the content to be shared available through a BitTorrent
node acting as a seed. A seed is a node that has a complete copy of a particular content, whereas a leecher is one that has only a partial
1 https://wiki.ubuntu.com/UbuntuOne

https://wiki.ubuntu.com/UbuntuOne


Fig. 1. General architecture of personal clouds.

R. Chaabouni et al. / Journal of Network and Computer Applications 65 (2016) 48–7150
copy. In this paper, seeds and leechers are simply referred to as peers and the set of all the peers sharing the same content is called a
swarm. Peers interested in a certain content are in charge of getting the corresponding .torrent file and then contacting the tracker to
acquire a set of other peers sharing the same content. Once these peers are located, it is possible for them to communicate to one another
in order to exchange parts of the file among them.2
3.2. Personal cloud systems

Definition: A Personal Cloud (PC) is a term generally used to refer to a file hosting service that allows its users to store, synchronize and share
content over the Internet. The authors in Garcia-Lopez et al. propose the following definition: “The Personal Cloud is a unified digital locker for our
personal data offering three key services: Storage, Synchronization and Sharing. On the one hand, it must provide redundant and trustworthy cloud
data storage for our information flows irrespective of their type. On the other hand, it must provide syncing and file exploring capabilities in different
heterogeneous platforms and devices. And finally, it must offer fine-grained information sharing to third-parties (users and applications)”.

Architecture: Figure 1 presents the general architecture of a PC. This figure is inspired from the official architecture of Dropbox
(Dropbox, Inc.).

The core elements of a PC are:

� Meta-data service: The meta-data servers contain all the meta-data information related to the clients and the files. They can be equipped
with a local database where all the meta-data is stored.

� Storage service: The storage service or storage back-end refers to the physical locations where the users' data are stored. It can be local,
in the form of local storage servers accessed via FTP/SFTP, or external, provided by a third-party (Amazon, Google, etc).

� Notification service: The notification service is dedicated to monitoring whether or not any changes have been made to the users'
accounts. Whenever a change to any file takes place, the client is notified in order to synchronize these changes.

� PC clients or user interfaces: The services offered by personal clouds can be utilized and accessed by physical clients through a number of
interfaces, including web interfaces (accessed through web browsers), desktop applications and mobile apps.

� Processing service: The processing service is responsible for processing the files and ensuring their delivery to the end-users. To
download a file, the client sends an HTTP GET request to the processing service. The latter verifies the existence of the file in the storage
nodes and the file is transferred using the HTTP protocol.
4. System architecture

In this paper, we consider a classic personal cloud (Store, Sync and Share functionalities) enriched with extra components that allow
inter-client content transfers via BitTorrent. The architecture of the system is presented in Fig. 2. Several components are added to
accommodate the BitTorrent behavior, including:

� Content delivery service: The content delivery service is also referred to as cloud. Its main role is to process the requests coming from the
end-users and ensure the delivery of the files to the corresponding requesters. The main components added, compared to the default
architecture (Fig. 1), are:
○ Coordinator: The coordinator is the core component of the cloud. It is responsible for managing all the clients' requests and ensuring

they are processed correctly. The coordinator is also responsible for the proper management of the cloud's resources.
○ Seeder nodes: The seeder nodes are the entities responsible for delivering the requested content from the storage back-end servers to

the end-users. To each file being distributed corresponds one seeder node. In our paper, we refer to these seeder nodes as cloud seeds
2 The official protocol specification can be found at: http://www.bittorrent.org/beps/bep_0003.html

http://www.bittorrent.org/beps/bep_0003.html


Fig. 2. Global view of the system architecture.

Fig. 3. Synchronization and sharing in personal cloud systems.

R. Chaabouni et al. / Journal of Network and Computer Applications 65 (2016) 48–71 51
or seeds. We distinguish two types of seeds: HTTP seeds and BitTorrent seeds depending on the algorithm adopted to distribute the
corresponding requested content to end-users.

� Clients swarms: All the end-user peers are organized into swarms. We define a swarm by the set of peers that are requesting the same
file. If a file is being downloaded by a single peer, we consider it as a single-peer swarm. This means that, at a given time, there are as
many swarms as the number of files being downloaded (to each file corresponds only one swarm and one seeder node). In our model,
we distinguish between two types of swarms:
○ HTTP swarms: The HTTP swarms are the swarms whose peers are downloading the corresponding file from HTTP seeds via HTTP.

Clearly, these peers are not collaborating with each other, but grouping them in swarms is a simple means of control which will help,
later on, in making the switching decision.

○ BitTorrent swarms: Similar to HTTP swarms, BitTorrent swarms are the swarms whose peers are downloading the corresponding file
from BitTorrent seeds via the BitTorrent protocol. Typically, these swarms are composed of two peers or more. Since the peers are
supposed to collaborate between each other with the help of the cloud seed, it makes no sense to have a single-peer BitTorrent swarm.

In our system, all the users files are uploaded using HTTP over an encryption layer of SSL/TLS. To download a file, the client sends an HTTP GET
request to the coordinator. The latter verifies the existence of the file in the storage nodes and decides the download protocol to be used: HTTP or
BitTorrent. The decision is made based on the load on the seed and the swarms' characteristics. In the case of a HTTP download, a HTTP seeder
node is associated with the requested file which will be transferred using HTTP (over SSL/TLS). Otherwise, in the case of a BitTorrent transfer, the
coordinator creates a torrent meta-data file and launches a corresponding BitTorrent seed. After that, the recently created .torrent file will be
transmitted to the corresponding clients who, unaware of all these interactions, will then start downloading the file using the BitTorrent protocol
(from the cloud seed and/or from the other clients). Evidently, the “old” clients who arrived before the switch to BitTorrent will also benefit from
the switch if they did not finish the download. In fact, when an “old” client requests a new part of the file to be downloaded, he will realize that
the transfer protocol has changed and will automatically adapt to the new one. Thus, each “old” client will join the swarm with the pieces he
already has, which means that he will be probably contributing to the swarm as soon as he switches to BitTorrent in a very transparent way.

This approach can applied widely in any cloud-based system. Personal clouds are the most appropriate for this proposal since the
developers can tune the client's implementation to extend them with the BitTorrent functionality. The two following common file dis-
tribution scenarios could benefit from our hybrid download strategy:

1. Synchronization: User A is adding a new file f to his personal account. During the synchronization process, the same file will be
download by all the other synchronized devices of the user (Fig. 3(a)).



R. Chaabouni et al. / Journal of Network and Computer Applications 65 (2016) 48–7152
2. Sharing: User A is sharing a file f with other users. In this case, the file will be downloaded by all the synchronized devices of the users
(Fig. 3(b)).

These scenarios are quite common in personal clouds. In Drago et al. (2012), the authors analyzed a dataset based the behavior of real users
of Dropbox. They noticed that about 40% of the households had more than one device linked to the service and that most of these households
had up to 4 devices connected. Moreover, about 60% of these households with more than one device have at least one shared folder.

In this paper, we use a trace of the Ubuntu One systemwhich is a personal cloud that was operated by Canonical Ltd. Even though this
service was mainly for data backup, we found that more than 11% of the files were downloaded more than once which corresponds to
more than 30% of the measured download operations. More details about the trace are provided in Section 6.
4.1. Security concerns

Like most of the personal cloud systems, all the client-server communication in our system is over HTTPS, which protects against eaves-
dropping and tampering with the contents of the communication. To ensure data confidentiality when the transfer protocol is BitTorrent, we
deploy a one-shot symmetric encryption mechanism that uses unique keys to encrypt the files that will be transferred via BitTorrent. In fact, when
the decision of using BitTorrent for a given file f is made, the cloud creates a corresponding metadata file (.torrent file) and assigns to f a unique
one-shot symmetric encryption key K (such as a DES or AES key). This key, along with the .torrent file are sent to each of the requesters via HTTPS.
The file f is encrypted by the server using K before being sent to the requesters via BitTorrent. More details are provided in Fig. 4.

When a device completes the download, it simply decrypts the protected file with the received key and the synchronization process
terminates. Note that integrity is already guaranteed by BitTorrent itself, so no additional hash computations are needed.
Fig. 4. Encryption mechanism with BitTorrent: Before being sent to Device 2, 3 and 4 via BitTorrent, the file f is encrypted on the server's side using a one-shot symmetric
key K. The .torrent metadata file is sent, along with the encryption key K via HTTPS.

Table 1
Table of notations.

W The cloud's upload budget limit
S The set of all active swarms
Shttp A subset of S that corresponds to the set of the swarms downloading the

files via HTTP
Sbt A subset of S that corresponds to the set of the swarms switched to

BitTorrent
s A swarm s¼ Ps; f s;ws; isBTs

� �
is identified by the set of the peers forming

it Ps, the file being shared fs, the corresponding amount of allocated
cloud bandwidth ws and a boolean variable isBTs that indicates the
download protocol

Ps Set of all the peers in s. Ps ¼ ðup ;dpÞ; 8pAPs
� �

where up and dp are
respectively the upload and download speeds of a given peer pAs

fs File requested by the peers in Ps
ws Amount of cloud bandwidth allocated to the swarm s
isBTs Boolean variable that indicates the download protocol adopted by the

peers in s. isBTs ¼ True, if peers in Ps are downloading fs via BitTorrent
and isBTs ¼ False, otherwise

Fs Size of the requested file fs
Ls Number of peers in Ps Ls ¼ jPs jð Þ
Ds Aggregated download speed of all the peers in Ps (Ds ¼

P
pAPs

dp)

dmin;s The download speed of the slowest peer in Ps (dmin;s ¼min8pAPs dp)
us The average upload speed of all the peers in Ps(us ¼

P
pAPs

up

Ls
)

ηs The effectiveness of file sharing. This variable was first introduced in Qiu
and Srikant (2004) and reused later in Chaabouni et al. (2014). ηs takes
real values in ½0;1� where 1 means maximum effectiveness while a value
of 0 signals the absence of collaboration between peers

αbt The overhead related to the start-up phase in BitTorrent transfers
τ The QoS constraint that defines the switching point from HTTP to

BitTorrent



R. Chaabouni et al. / Journal of Network and Computer Applications 65 (2016) 48–71 53
5. Bandwidth allocation: problem and solution

5.1. Problem description

In allocating the cloud's bandwidth, our main goal is to minimize the upload bandwidth ws allocated to a swarm sAS while taking into
consideration the overall quality of service. These allocations should be non-negative (wsZ0; 8sAS) and their sum should not exceed the
cloud's upload budget limit (

P
sA SwsrW). The bandwidth allocation strategy follows these two rules:

Rule 1. HTTP is the default download protocol and each swarm is allocated a share of the cloud's bandwidth equal to its demand.

Rule 2. The cloud can decide to switch the download protocol for a given swarm s from HTTP to BitTorrent if it (the cloud) will save in
bandwidth and if this change of protocol will not jeopardize the quality of service constraint related to the download time of the peers in s.

Rule 1 defines HTTP as the default download protocol and sets the share of the cloud's bandwidth allocated to s to be equal to the aggregated
download speeds of the peers in s (ws¼Ds). When it is possible to gain in bandwidth, the cloud can decide to switch the download protocol from
HTTP to BitTorrent, as stated in Rule 2. This change of protocols is fixed by a quality of service constraint τ. This constraint defines the degree of
improvement (or degrade) in download time that is accepted when considering the switch to BitTorrent. For instance, a τ¼0.2 requires an
improvement of a least 20% in download time that a swarmwould gain if it adopts BitTorrent rather than HTTP. A negative value of τ, such as �0.5
means that losses in download time up to 50% are accepted. The bandwidth allocated to BitTorrent swarms should be the minimal that satisfies
the switching constraint. As the swarms evolve over time with new peers joining and leaving, we will need to adapt the assignments and
allocations accordingly since the cloud's upload speed is limited by W. The complete notation is presented in Table 1.

To better understand the problem, it is important to introduce some parameters that will interfere in making the decision about the bandwidth
allocation. These parameters serve to compare the performance of using HTTP or BitTorrent to distribute a given file shared between a set of peers.

We consider the case of a swarm s composed of Ls distinct peers requesting the same file fs from the same source, called the cloud seed (or
simply the seed). We denote by ws the allocated share of the cloud's upload bandwidth reserved to s, Fs the size of the shared file fs, us the
average upload speed of the peers in the s and by dmin;s the download speed of the slowest peer among them (see Fig. 5 for more details).

In the following subsections, we will present some formulas related to the estimation of the download times in HTTP and BitTorrent
(respectively Thttp and Tbt). We will also define the gain percentage Gain and estimate the minimum cloud upload bandwidth needed to
satisfy the QoS constraint for s by solving the equation Gainðwbt

s ; sÞZτ.

5.1.1. Download time in HTTP Thttp
In the case fs is distributed via HTTP, the distribution time Thttp is limited by the download speed of the slowest peer dmin;s or the seed

bandwidth ws divided equally between the Ls clients. It can be defined as follows:

Thttp ws; sð Þ ¼ Fs

min dmin;s;
ws

Ls

� �: ð1Þ

5.1.2. Download time in BitTorrent Tbt
When fs is distributed via BitTorrent, then the distribution time Tbt depends on the download speed of the slowest peer dmin;s, the aggregated

upload bandwidth of all the nodes divided equally between all the Ls leechers, and the cloud's allocated share ws. Tbt has been studied before in
Kumar and Ross (2006) and an approximation of the distribution time was given. In Chaabouni et al. (2014), we extend that approximation and
propose an accurate estimation of Tbt that takes into consideration the overheads related to the nature of the protocol, as follows:

Tbt ws; sð Þ ¼ Fs

min dmin;s;
wsþηs:us:Ls

Ls
;ws

� �þαbt ; ð2Þ

where αbt is the overhead related to the start-up phase, and ηs measures the effectiveness of file sharing for s. For more details about αbt and ηs,
refer to Chaabouni et al. (2014). Eq. (2) was validated in Chaabouni et al. (2014) using different bandwidth settings and different file sizes, and was
proven to be accurate even with small files.

5.1.3. The gain ratio
Sometimes the use of BitTorrent may incur a longer download time compared to HTTP especially for small files. The main challenge is

to decide when it is worth switching to BitTorrent. The key element in making the decision is the gain in download time which represents
the difference in download time between HTTP and BitTorrent. To this extend, we introduced in Chaabouni et al. (2014) the gain ratio
Fig. 5. File distribution scenario.



R. Chaabouni et al. / Journal of Network and Computer Applications 65 (2016) 48–7154
which measures the improvement in terms of download time between client–server and peer-assisted systems, as follows:

Gain ws; sð Þ ¼ Thttpðws; sÞ�Tbtðws; sÞ
Thttpðws; sÞ

:

The gain can take different values which can be either negative, positive or equal to zero. A positive (respectively negative) gain ratio equal
to x (respectively �x) means that downloading the file via BitTorrent entails a gain (respectively a loss) of 100 x% in download time
compared to HTTP. A gain ratio equal to zero indicates that both protocols (BitTorrent and HTTP) have the same estimated download time.

We derived in Chaabouni et al. (2014) the analytic equation of the gain based on the values of the divisors of Thttp and Tbt, which are
respectively min dmin;s;

ws
Ls

n o
and min dmin;s;

ws þηs Ls us
Ls

;ws

n o
, as follows:

Gain ws; sð Þ ¼

�αbt dmin;s

Fs
; if dmin;sr

ws

Ls
and dmin;srmin

wsþηs us Ls
Ls

;ws

� �

1� ws

Ls dmin;s
�αbt ws

Fs Ls
; if

ws

Ls
rdmin;s and dmin;srmin

wsþηs us Ls
Ls

;ws

� �

1� ws

wsþηs us Ls
�αbt ws

Fs Ls
; if

wsþηs us Ls
Ls

rmin dmin;s;ws
� �

1� 1
Ls

�αbt ws

Fs Ls
; if wsrmin dmin;s;

wsþηs us Ls
Ls

� �
:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð3Þ

5.1.4. Solving the equation Gainðwbt
s

??

; sÞZτ
In order to calculate the minimum amount of cloud bandwidth needed to ensure that the switching condition Gainðwbt

s ; sÞZτ is
satisfied, it is essential to reverse the gain formulation (Eq. (3)). To this extend, we study the behavior of the gain formulas when ws

bt

varies. Based on this constraint, we identify two exhaustive cases in which the gain equations are monotonically decreasing. For each case,
we deduce the reversed equations of the gain, interval per interval, as follows3:

� Case A: ðLs�1Þdmin;sZLs ηs us: the average download speed of the peers in the swarm s is higher than the upload bandwidth that the
whole swarm can provide:

wbt
s ¼

Ls dmin;s; 8τA �1; �αbtdmin;s

Fs

� 	
ð1�τÞFs Ls dmin;s

Fsþdmin;s αbt
; 8τA �αbt dmin;s

Fs
;
ηs us

dmin;s
�αbtðdmin;s�ηs usÞ

Fs

� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2b2�2abcþ4abþc2

p
�ab�c

2 b
; 8τA ηs us

dmin;s
�αbtðdmin;s�ηs usÞ

Fs
;1� 1

Ls
� αbt ηs us

ðLs�1ÞFs

� 	
Fs Lsð1�τÞ�1½ �

αbt
; 8τA 1� 1

Ls
� αbt ηs us

ðLs�1ÞFs
;1� 1

Ls

� 	

∄; 8τA 1� 1
Ls

; þ1
� 	

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

where:

a¼ ηs Ls us; b¼ αbt

Fs Ls
and c¼ τ ð4Þ

� Case B: ðLs�1Þdmin;s rLs ηs us: the average download speed of the peers in the swarm s is lower than the upload bandwidth the whole
swarm can provide:

wbt
s ¼

Ls dmin;s; 8τA �1; �αbt dmin;s

Fs

� 	
ð1�τÞFs Ls:dmin;s

Fsþdmin;s αbt
; 8τA �αbt dmin;s

Fs
;1� 1

Ls
�αbt dmin;s

Fs Ls

� 	
Fs Lsð1�τÞ�1½ �

αbt
; 8τA 1� 1

Ls
�αbt dmin;s

Fs Ls
;1� 1

Ls

� 	

∄; 8τA 1� 1
Ls

; þ1
� 	

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

5.2. Bandwidth allocation and protocol management algorithm

In this section we present our bandwidth distribution and protocol management algorithm. This algorithm aims to minimize the
cloud's allocated bandwidth among the seeder nodes, while respecting the QoS constraint. We remind that a seeder node is an entity
responsible for distributing a given file to the corresponding set of clients. The share of the cloud's upload bandwidth allocated to each
seeder node should verify the constraints of the problem previously explained in Section 5.
3 For the complete proof of the solution, refer to Appendix A.



R. Chaabouni et al. / Journal of Network and Computer Applications 65 (2016) 48–71 55
In addition to the bandwidth allocations, the algorithm is also responsible for evaluating for each swarm the most suitable content
distribution protocol: HTTP or BitTorrent. A swarm would switch to BitTorrent if the following conditions are satisfied:

1. The number of clients in the swarms is higher or equal to 2. In fact, it makes no sense to use BitTorrent with only one client interested in the file.
2. The switch to BitTorrent should satisfy the quality of service constraint τ. This means that BitTorrent can be used only when the gain

percentage (Eq. (3)) is higher or equal than τ.
3. The amount of cloud bandwidth allocated in BitTorrent should be smaller than the one using HTTP. This means that the switch will only

take place if the cloud would gain in terms of bandwidth.

We proposed in Chaabouni et al. (2014) a simple decision approach that consists in calculating for each swarm sAS, with more than
one peer, how much the swarmwould gain in terms of download time if BitTorrent is used instead of HTTP. If that gain satisfies the quality
of service constraint τ, then BitTorrent is chosen. Otherwise, HTTP is kept as the download protocol. Even though this approach is simple
and direct, it has to be further improved in order to satisfy the third switching condition. In this paper, we go a step further and calculate
the minimum amount of bandwidth ws

bt needed to satisfy the constraint Gainðwbt
s ; sÞZτ (Section 5.1.4). Thus, instead of comparing

Gainðwbt
s ; sÞ and τ, we compare Ds and ws

bt and the protocol that requires less bandwidth is chosen.

5.3. Algorithm description

The main goal of our bandwidth distribution and switching algorithm is to optimally manage the cloud's limited bandwidth among the seeder
nodes. It is also responsible for evaluating for each requested file the most suitable content distribution model: client–server or peer-assisted,
based on the current demand load. Each active seeder node in the system is associated with a swarm of clients that are interested in the same file.
It is important to remind here that the default bandwidth distribution protocol is HTTP, and BitTorrent can be also used when the switching
conditions previously stated are satisfied. The swarmswhose peers are using HTTP as a transfer protocol are referred to as HTTP swarms (Shttp is the
set of HTTP swarms) and the ones with peers downloading via BitTorrent are labeled as BitTorrent swarms (Sbt is the set of BitTorrent swarms).

The algorithm is executed whenever a change affects a swarm snAS. This change can be related to a modification in one or more of the
parameters of a certain swarm. This change can be due to one or more of the following cases:

� A new peer pn wants to download a file f sn . If the file is already requested by other peers, then pn will be added to the existing swarm sn.
Otherwise, a new swarm sn will be created containing a single peer pn.

� A peer pn leaves a swarm sn. If pn was not the only peer in the swarm, then the modified swarmwill contain a list of the other remaining
peers. If pn was the last peer in sn, then sn will be removed from S.

� The upload or download speed of one or more of the peers in sn changes.

The algorithm requires the following input parameters: the set of all current swarms S, the swarm affected by the change sn, the cloud's
upload bandwidth budget limit W and the switching constraint τ.

Algorithm 1. Bandwidth distribution and switching algorithm.
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

21:
22:
Input S
 ▹the set of all the current swarms (S¼ Shttp [ Sbt)

Input sn
 ▹swarm affected by a change

Input W
 ▹the cloud's upload bandwidth budget limit

Input τ
 ▹the switching constraint
if Lsn ¼ 1 then
 ▹sn is a single-peer swarm

wsn ¼Dsn
else if Lsn 41 then
 ▹sn has more than one peer

if snAShttp then
 ▹sn is a HTTP swarm
calculate wbt
sn using Eq. (4)
if wbt
sn rDsn then
 ▹switching to BitTorrent
switch the transfer protocol from HTTP to BitTorrent

isBTsn ¼ True
 ▹mark sn as a BitTorrent swarm

wsn ¼wbt

sn
else
 ▹not switching to BitTorrent

wsn ¼Dsn
end if

else
 ▹snASBitTorrent , s

n is a BitTorrent swarm

wsn ¼wbt

sn calculated using Eq. (4)

end if
else
 ▹Lsn ¼ 0, sn no longer exists

remove sn from SP

if sASwsþwsn ¼W then
 ▹the cloud was overloaded
for each s in Sbt do
ws ¼wsþ
wsP

sA Sbt
ws

wsn

▹redistribute wsn to the BitTorrent swarms
end for

end if



23
24
25
26

27:
28

Fig

R. Chaabouni et al. / Journal of Network and Computer Applications 65 (2016) 48–7156
:

. 6. Total upl
end ifP
oaded and downloaded volume and the number of upload and download operations p

Fig. 7. Needed upload bandwidth over time during th
:
 if sA Sws4W then

:
 for each s in S do

:
 ws ¼ wsP

sASws
W
 ▹scale down all the bandwidth shares
end for

:
 end if
Using these input parameters, the algorithm identifies for each swarm the most suitable download protocol (HTTP or BitTorrent) and
calculates the amount of bandwidth to be allocated to the corresponding seed, as follows:

� If s* is a single-peer swarm (Lsn ¼ 1), then the cloud allocates to s* a share of bandwidth equal to its download capacity: wsn ¼Dsn (lines
1 and 2). In this case, the file will be distributed directly from the cloud seed to the single-peer using HTTP.

� If the number of peers in s* is strictly higher than 1 (lines 3–12), then there are two possible cases:
○ If the peers in s* are using HTTP to download f sn (isBTsn ¼ False), the algorithm verifies if it is worth it to switch to BitTorrent. To do so,

wbt
sn is calculated according to Eq. (4). We remind that wbt

sn measures the amount of seed bandwidth required to verify the quality of
service constraint τ when using BitTorrent for s*. The algorithm compares later this bandwidth (wsn ) with the bandwidth allocated by
default to the swarm (which is equal to Dsn ).

- If the bandwidth required using BitTorrent is smaller than the one allocated by default (wbt

sn rDsn ), then the download protocol more
suitable for s* is BitTorrent (lines 4–9). In this case, a.torrent file associated to f sn is created and a BitTorrent seed is launched in the
cloud. All the peers in s* have to download the .torrent file recently created and then can start downloading f sn via BitTorrent.

- If the use of BitTorrent requires more bandwidth than HTTP, then it is not worth switching to BitTorrent. In this case, the cloud
allocates a share of bandwidth equal to Dsn (line 11).
○ If s* has already switched to BitTorrent, then the algorithm recalculates wbt
sn : the bandwidth needed to maintain the quality of service

constraint τ. The amount of bandwidth allocated to s* is equal to wbt
sn .� If s* is an empty swarm (Lsn ¼ 0), then the swarm is removed from the swarms' list. If the cloud was overloaded before the removal of s*,

then the amount of bandwidth that was previously allocated to s* is redistributed among the BitTorrent swarms (lines 18–22). This will
prevent the cloud's bandwidth from being underutilized and will boost the distribution of the files among the BitTorrent swarms.
er hour during the day January 21st, 2014 for the UB1 system.

e peak hour.



Fig. 8. Amount of bandwidth served to the clients with and without the algorithm. The extra served bandwidth with the algorithm comes from the peers involved in
BitTorrent swarms. Settings: W¼300 Mbps and τ¼0.4.

Fig. 9. CDF download times and inter-arrival time of requests and BitTorrent swarms with and without the algorithm. Settings: W¼300 Mbps and τ¼0.4.

Table 2
Percentages of operations with gains and losses in download time resulted by the algorithm compared to pure HTTP use. The cloud upload bandwidth budget limit is
W¼300 Mbps.

Results τ1 ¼ �0:2 (%) τ2 ¼ 0 (%) τ3 ¼ 0:2 (%) τ4 ¼ 0:4 (%)

% of operations with gain 82.89 82.9 83.43 83.53
% of operations with loss 2.23 2.31 2.48 2.85
% of operations with no

difference
14.88 14.79 14.09 13.62

Total % 100 100 100 100

Table 3
Total sum of all the download times for all the operations and the net gain percentage for the algorithm applied on the one-hour sample of the UB1 trace. The cloud upload
bandwidth budget limit is W¼300 Mbps.

Results τ1 ¼ �0:2 τ2 ¼ 0 τ3 ¼ 0:2 τ4 ¼ 0:4

sum_http_hours (h) 2450.2 2450.2 2450.2 2450.2
sum_algo_hours (h) 2000.98 1997.05 1952.73 1906.56
net_gain_hours (h) 449.22 453.15 497.47 543.64
net_gain_% 18.33% 18.49% 20.3% 22.19%

R. Chaabouni et al. / Journal of Network and Computer Applications 65 (2016) 48–71 57
When the number of simultaneous requests becomes high, the seed might be unable to serve all the swarms at their full speed. In such
a case, the cloud has to scale down all the bandwidth allocations proportionally to the demand (lines 24–28).

Complexity of the algorithm: Our bandwidth distribution and switching algorithm has a complexity of O(n) which is linear with the
number of current swarms. The coordinator only keeps in memory the state of the swarms during the iterations. This corresponds to n� k
units of storage where n is the maximum number of simultaneous swarms and k is the size, in unit of storage, required to store the
essential information about a current swarm. k is rather small (compared to the size of the files) and it depends on the number of peers in
the swarm and the storage space required to store the information of each one of these peers.



200 Mbps 300 Mbps

400 Mbps 500 Mbps

Fig. 10. Number of simultaneous clients present in the system with and without the algorithm. Settings: w¼200, 300, 400, and 500 Mbps; τ¼0.4.

Net gain percentage Average BitTorrent swarms’ size

Fig. 11. Net gain percentage and average size of the BitTorrent swarms for different cloud bandwidth limits ranging between 180 and 500 Mbps. The switching constraint
considered here is τ¼0.2.

R. Chaabouni et al. / Journal of Network and Computer Applications 65 (2016) 48–7158
6. Validation of the algorithm: application to the personal cloud scenario

In order to evaluate the performance of the proposed algorithm, we take advantage of a real trace of the Ubuntu One personal cloud
system (Tinedo et al., 2015). In this context, we implement two simulators: the first simulates the default behavior of the cloud where all
the download requests are treated individually and the files are distributed via HTTP. The second simulates the bandwidth distribution and
protocol management algorithm. We compare later the results of using each of the approaches on the trace.



trace_1 trace_2

Fig. 12. New bandwidth requirements of the modified traces.

R. Chaabouni et al. / Journal of Network and Computer Applications 65 (2016) 48–71 59
6.1. The Ubuntu One trace

In our validation, we use a real trace of the Ubuntu One (UB1) system. The trace was provided by Canonical Ltd.4 in the context of the
CloudSpaces project.5 The logs were collected for about a month from their servers located in London, based on the behavior of real users. Each
line of the trace represents an upload or download operation performed by one user on a given file. For the sake of privacy, files and user real
identifiers are presented in the form of unique hash codes. For each operation, several information were collected, including: the timestamp, the
type of operation (“up” or “down”), the hash and size of the file in question, the user's hash identifier and the corresponding upload and download
bandwidths. We filtered the original trace and focused on the upload and download operations that were performed during a random day of the
trace (January 21st, 2014). For that day, 6,331,131 operations performed by 33,257 distinct client on 4,095,057 unique files were logged.

Figure 6 shows the total uploaded and downloaded volume along with the total number of upload and download operations measured
per hour during the whole day. The hours are logged according to the Greenwich Mean Time (GMT). We notice that the peak with the
highest number of upload and download operations corresponds to the hour between 21:00 and 22:00 GMT.

To facilitate the validation process, we focus only on that peak hour, but we believe the results would be similar for the whole trace. Since we aim to
manage efficiently the upload speed of the cloud, we filter the one-hour sample to keep only 225,514 download operations related to 173,756 distinct
files. The average file size in the sample is about 1MB, 988.26 KB to be precise.We notice in that sample that about 68.62% of the operations correspond
to single downloads. Single downloads are operations related to files downloaded only once. These files account for about 89% of the total files
downloaded between 21:00 and 22:00. This means that only 31.38% of the operations correspond to multiple downloads of the same file and that only
11% of the files were downloaded more than once. This signifies that only 31.38% of the operations are potential candidates for switching to BitTorrent.

Focusing more on that peak hour, we calculate how much bandwidth should be provided by the cloud seed in order to satisfy the need
of all the requesting peers if the download protocol was HTTP. To do so, we went through the trace tracking the active swarms at each
timestamp and summing up all the download capacities of the active peers. With each new download request, we updated the amount of
data left to be downloaded by each peer. Once a peer has finished downloading the file, it was removed from the active peers list. The
download times were calculated according to Eq. (1). We plot the resulting amount of needed bandwidth in Fig. 7.

This figure will be useful later to set a potential limit on the cloud seed's bandwidth when evaluating the algorithm's efficiency. It
shows that the total need in cloud bandwidth does not exceed 650 Mbps. So, when evaluating the algorithm, it would be better to vary the
cloud limit WA �0;650½ in order to measure the effect of the seed's capacity on the algorithm's performance.
6.2. Experimental settings

To evaluate the efficiency of our proposal, we developed a Python6 script that simulates the bandwidth distribution and switching
algorithm (Algorithm 1) and logs the results in two different log files. The first log file is related to the seed: it keeps a log of the current
state of the seed. At each timestamp, several parameters are logged including: the amount of needed bandwidth, the amount of band-
width served by the seed and the current number of swarms and clients. The second log keeps track of the start time and end time of each
download. The download times are updated at each timestamp according to Eqs. (1) and (2), for HTTP and BitTorrent swarms, respectively.

In order to evaluate the results, we also developed another script that simulates the default behavior of the seed in which each
download operation is treated individually and the download times are calculated according to Eq. (1). This simulator also keeps similar
logs as the algorithm simulator in order to facilitate the comparison of the approaches.
4 Canonical Ltd: http://www.canonical.com
5 FP7 CloudSpaces Project: http://www.cloudspaces.eu
6 Python Software Foundation: http://www.python.org

http://www.canonical.com
http://www.cloudspaces.eu
http://www.python.org


trace_1: Served bandwidth trace_2: Served bandwidth

trace_1: CDF download times trace_2: CDF download times

trace_1: CDF inter-arrival times trace_2: CDF inter-arrival times
Fig. 13. Results using the modified traces.

R. Chaabouni et al. / Journal of Network and Computer Applications 65 (2016) 48–7160



Table 4
Comparison of the results with the three different traces. The experiment settings are the following: τ¼0.4 for all the traces, W is 300 Mbps for the original trace, 400 Mbps
for trace_1 and 1000 Mbps for trace_2.

Results Original trace trace_1 trace_2

Number of operations affected by the
change

0 69,286 65,992

(% of the total number of operations) (0%) (30.72%) (29.26%)

Number of operations switched to
BitTorrent

1734 36,727 43,997

(% of the total number of operations) (0.76%) (16.28%) (19.5%)

Number of BitTorrent swarms created 786 9,324 10,763
Average BitTorrent swarm size (in peer/

swarm)
2.206 3.93 4.08

Average inter-arrival time of BitTorrent
swarms (s)

4.570 0.386 0.334

Average download time without the algo-
rithm (s)

39.11 106.09 186.82

Average download time with the algo-
rithm (s)

30.43 52.77 61.08

net_gain_% 22.19% 50.26% 67.30%

Fig. 14. Algorithm's performance during the trace simulation.

R. Chaabouni et al. / Journal of Network and Computer Applications 65 (2016) 48–71 61
6.3. Results

We exploit the previously described trace sample of UB1 and re-simulate the arrival pattern of the peers to validate our approach. We
run both simulators with a wide combination of τ and W values and collect the logs of each experiment. Then, we evaluate our algorithm
comparing the results with the ones obtained using the default strategy with the same bandwidth limits.

First of all, we run the simulator fixing the upload bandwidth budget at 300 Mbps and varying the switching constraint τ. The goal is to
get a first idea of the performance of the algorithm. We measure for each simulation, the download time taken by each operation and
compare them to the times measured using the HTTP-only simulator with the same budget limit. It is important to note here that the
download times are measured in seconds with a precision of one millisecond. We classify the operations into three different categories:
operations that have gained in download time with the algorithm, operations that experienced losses and operations whose download
time is left unchanged for both approaches.

Table 2 presents the percentages of the operations in each category. We notice that for the three different values of τ, more than 80% of
the operations benefited from a gain in download time, about 15% kept the same time and only less 3% of them lost in download time.
Even though these percentages are quite good, we need to make sure that the cumulative gains are higher than the losses. To do so, we
sum all the download times of all operations for both approaches and calculate the total net gain percentage (net_gain_%). net_gain_%
represents the percentage ratio between the total time gained (or lost) by using the algorithm (net_gain_hours¼ sum_http_hours�
sum_algo_hours) and the total download times using HTTP only (sum_http_hours):

net_gain_%¼ net_gain_hours
sum_http_hours

� 100¼ sum_http_hours�sum_algo_hours
sum_http_hours

� 100

Table 3 presents the total sum of all the download times of all the download operations and the net gain percentage based on the UB1
one-hour sample. The first row represents the sum of download times using HTTP. It is important to mention here that, for HTTP, this sum
depends only on the cloud upload bandwidth budget W. Hence, for the fixed bandwidth W¼300 Mbps, it is always equal to 2450.2 h,



R. Chaabouni et al. / Journal of Network and Computer Applications 65 (2016) 48–7162
regardless of the τ constraint. However, the sum of the download times using the algorithm with a given cloud bandwidth limit depends
highly on the switching constraint τ. In Table 3, we compare the results with three different τ values.

The first constraint is τ1 ¼ �0:2: this constraint can be translated as follows: at a certain timestamp, a swarm can switch from HTTP to
BitTorrent only if it will only lose less than 20% in download time. Under this constraint, we notice that the algorithm performs better than
HTTP with a net gain in the client's download time equal to 18.33%. Next, we make the constraint a little bit stricter and we accept only
switches to BitTorrent when the peers in question will only gain in download (τ2 ¼ 0, no loss is permitted). We notice that the net gain
percentage improves slightly. This is because the constraint will prevent swarms with negative gains from switching which will result in
an increase of the total amount of net gain hours. Similarly, with the third and fourth constraints τ3 ¼ þ0:2 and τ4 ¼ þ0:4 (switch only if
the corresponding peers will gain 20%, respectively 40%, or more gain in download time), the net gain percentage gets higher and reaches
more than 20% of the total download time of all peers.

To measure the efficiency of the algorithm for a specific configuration, we fix the switching constraint τ¼0.4 and we suppose that the
cloud's upload budget limit W¼300 Mbps. Figure 8 shows the efficiency of taking advantage of the upload speed of the peers. It compares
the amount of bandwidth served by the seed to the clients without using the algorithm (all files are distributed via HTTP) versus the total
amount that becomes available when using the algorithm. This latter includes, in addition to the cloud's upload limit, the upload speed of
the clients who switched to BitTorrent. We notice that the peers' contribution can reach up to 60% of the total cloud's budget.

The total operations switched to BitTorrent represents only 2.45% of the operations with multiple downloads, which corresponds to
less than 1% of the total number of operations, and the average size of the swarms switched to BitTorrent is 2.206 peers per swarm.
Despite this limited number of switched operations, we notice in Fig. 9(b) that the download times are reduced using the algorithm. As a
matter of fact, the average download time without using the algorithm is 39.11 s. This time is reduced by 22.19% using the algorithm to
only 30.43 s. Figure 9(b) presents the CDF of the inter-arrival times of requests and BitTorrent swarms. The average inter-arrival rate of the
download requests (time between each arrival of a download request into the system and the next) is 0.0159 s. The average inter-arrival
rate of the BitTorrent swarms (time between each creation of a BitTorrent swarm and the next) is 4.5702 s.

After evaluating the general performance of the algorithm, we study the effect of the bandwidth limit W. Figure 10 compares the number of
simultaneous clients in the HTTP-only mode and using the algorithm for four different values of W (200, 300, 400 and 500Mbps, respectively). It is
important to mention here that in our simulator, peers do not stay as seeders in the system. They leave as soon as they finish downloading the
requested files. When comparing the number of simultaneous peers using each of the approaches, we note that a lower number of simultaneous
peers means that the clients are downloading faster which proves that the corresponding approach is more efficient.We notice that with very limited
bandwidth budget (200 and 300Mbps), the algorithm performs better than pure HTTP. This is due to the fact that when the seed has a very limited
bandwidth budget, the share allocated to each swarmwill be small. Therefore, the HTTP download timewill be “high” and the overhead of switching
to BitTorrent will be negligible. However, the higher the seed bandwidth gets, the bigger the overhead becomes compared to the download time in
HTTP. This explains the degrade in the algorithm's performance when the seed's bandwidth budget becomes quite high (400Mbps).

Figure 11 summarizes, for different values of W ranging from 180 Mbps to 500 Mbps, the net gain percentage and the average size of
BitTorrent swarms. The first figure (Fig. 11(a)) plots the evolution of the net gain percentage with the cloud's bandwidth. Similar to the
aforementioned conclusions, when the bandwidth is small (lower than 320 Mbps), the net gain percentage in download time of the clients
is important (between 17.5% and 21%). However it gets lower with the increasing budget of the cloud, until reaching negative values when
the seed's bandwidth is higher than 420 Mbps. This confirms our previous conclusions that the algorithm is more efficient when the cloud
seed has very limited bandwidth resources. The second figure (Fig. 11(b)) presents the average number of peers in BitTorrent swarms. We
notice that most of the BitTorrent swarms are very small with an average size of about 2.22 peers per swarm. This can be due to the limited
sharing in UB1 system and to the fact that most of UB1 users are using the service for data backup only.

6.4. Modified trace: bigger shared files: results

Even though the UB1 trace has limited sharing and very small files (most of the files are smaller than 1 MB), we could achieve relatively
important improvements in the system's performance. To further validate our proposal, we modified the trace in order to have bigger
shared files. Our idea was to keep the same arrival pattern of the peers and just increase the size of the files that were downloaded more
than once. We obtained two different modified traces:

� trace_1: This trace preserves the same arrival pattern as in the original trace, but we increase the size of the files smaller than 1 MB by
1 MB. For instance, if a file fs is downloaded more than once in the original trace sample and has a file size of 100 KB, then, in trace_1,
the same file would be 1 MB (1024 KB) bigger, that is 1124 KB. We chose this value (1 MB) because it represents the mean file size of all
the files in the original trace.

� trace_2: This trace is obtained the same way as trace_1. We choose a bigger limit on size equal to 5 MB, which is the average size of a
picture. This means that trace_2 also preserves the same arrival pattern as in the original trace, but here we increase the size of the files
smaller than 5 MB by 5 MB. For instance, if a file fs is downloaded more than once in the original trace sample and has a file size of 1 MB,
in trace_2, the same file would be 5 MB bigger, that is 6 MB.

Clearly, whenwe increase the size of some files, the amount of bandwidth needed to distribute the requested file to the peers will increase too.
Figure 12 presents the new required bandwidth for both traces and shows that trace_1 and trace_2 require clearly more bandwidth compared to
the original requirements (Fig. 7). We apply later our algorithm on both traces and compare the results. We use the same switching constraint
τ¼0.4 and we fix the cloud's upload budget limit W to 400 Mbps and 1000 Mbps for trace_1 and trace_2 respectively.

Figure 13 and Table 4 summarize the results with and without the algorithm. As we can see in Fig. 13(a) and (b), the amount of
bandwidth contributed by the BitTorrent clients can reach up to 100% of the cloud's initial limit. In addition, we notice important
improvements in the net gain percentage that increases from about 22% for the original trace to reach over 50% when the files are bigger
than 1 MB and more than 65% when the files are bigger than 5 MB. In fact, increasing the file sizes results in increased probability of
switching to BitTorrent. Actually, the percentage of operations switched to BitTorrent grows from 0.76% in the original trace and reaches
19.5% in trace_2. This leads to a noticeable decrease in the inter-arrival time of BitTorrent swarms as seen in Fig. 13(e) and (f). The



R. Chaabouni et al. / Journal of Network and Computer Applications 65 (2016) 48–71 63
frequency of creation of new BitTorrent swarms increases from 0.21 swarms per second for the original trace to 2.59 swarms per second
for trace_1 and reaches 2.98 swarms per second for trace_2. Similarly, the average size of the swarms increases from 2.206 peers per
swarm to reach about 4.08 peers per swarm when the sizes of the shared files become bigger.

6.5. Algorithm's performance

To measure the efficiency of the algorithm, we measure the time needed to simulate the original trace. The simulation of the whole
trace (more than 225,000 operations) took around 82 min until all the downloads have finished. We also measure the time needed to
calculate the bandwidth distribution for each timestamp (with the arrival of each new download operation). This time corresponds to one
execution of the algorithm and we refer to it as the execution time. Figure 14(a) presents the CDF of this execution time. It varies between
0.005 and 71.566 ms. The mean and median execution times are 15.178 and 8.006 ms, respectively.

To measure the effect of the number of clients and swarms on the execution time at each round of the algorithm, we depict in Fig. 14
(b) the scatter plot of the execution time as a function of the number of clients/swarms, along with the corresponding polynomial regression
of degree d¼1. The slopes of these lines are equal to 0.016 and 0.017 for the number of clients and the number of swarms respectively.
7. Conclusions

In this paper, we propose a bandwidth allocation and protocol management algorithm that can be implemented in personal cloud
systems with limited bandwidth budget. Based on the demand on the cloud and the load on each file, the cloud server is able to decide
whether to use a client-server approach or a peer-assisted one to distribute that file. Our proposed algorithm for the management of cloud
bandwidth achieves important improvements in terms of download time for the clients, even though in our simulator's implementation
we were “stricter” on BitTorrent than HTTP. In fact, we used an estimation of the download time in HTTP that does not take into account
the protocol's overheads. However, on the other hand, we added to BitTorrent the potential latency of the peers discovery phase and the
delay that can be caused by pieces unavailability. Moreover, we considered the “worst case scenario” where the peers leave the system as
soon as they finish download, while in reality, the synchronization process works always in the background without the user being aware
of it. This means that it is more probable that the peers will stay longer, even after finishing the download and contribute more to the
system. Despite that, the results prove that the use of BitTorrent in personal cloud systems can help the clients gain in download time,
especially when the bandwidth resources of the seed are limited. In such conditions, the net gain percentage in the download time of all
the peers exceeds 20% of their download time in most cases, based on a real trace of the UB1 system.

The original UB1 trace has limited sharing and very small files. For this reason, we modified it in order to have bigger shared files. The
application of the algorithm on the modified traces results in important improvements in the download time that exceed 65% of the
original download time of all the peers.

Nevertheless, several extensions can be added to the algorithm. For instance, it is possible to consider two different values of the
switching constraint based on the load of the seed: τoverloaded and τnot_overloaded. This way, strict constraints can be put when the seed is not
overloaded and loosened it up when the load on the seed increases.
Acknowledgments

This work has been partially funded by the Spanish Ministry of Economy and Competitiveness in the context of the project Cloud
Services and Community Networks (TIN2013-47245-C2-2-R) and by EU in the context of the projects CloudSpaces: Open Service Platform for
the Next Generation of Personal clouds (FP7-317555) and IOStack: Software-defined Storage for Big Data (H2020-ICT-2014-7-1).
Appendix A. Inverting the gain formulas: solving the equation: Gainðws
??
; sÞ ¼ τ

The goal of this section is to reverse the equations of the gain and get, for a given swarm s and a given file of size Fs, the amount of
bandwidth needed to be provided by the seed ws that satisfies the condition Gainðws; sÞZτ. We remind our reader that the gain per-
centage is defined as follows:

Gain ws; sð Þ ¼

�αbt dmin;s

Fs
; if dmin;sr

ws

Ls
and dmin;srmin

wsþηs us Ls
Ls

;ws

� �

1� ws

Ls dmin;s
�αbt ws

Fs Ls
; if

ws

Ls
rdmin;s and dmin;srmin

wsþηs us Ls
Ls

;ws

� �

1� ws

wsþηs us Ls
�αbt ws

Fs Ls
; if

wsþηs us Ls
Ls

rmin dmin;s;ws
� �

1� 1
Ls

�αbt ws

Fs Ls
; if wsrmin dmin;s;

wsþηs us Ls
Ls

� �
:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

While inverting this equation and in order to be able to define correctly the interval delimiters, we need to distinguish two different
cases based on the maximum of ðLs�1Þdmin;s and Ls ηs us:
� Case A: ðLs�1Þdmin;sZLs ηs us

� Case B: ðLs�1Þdmin;srLs ηs us



Fig. A4. Interval for Case IV.

Fig. A1. General shape of the gain ratio as a function of the upload speed of the seed in case A when ðLs�1Þdmin;sZLs ηs us .

Fig. A2. Delimiter lim2 and interval for Case II.

Fig. A3. Delimiter lim2p and lim3 and interval for Case III.

R. Chaabouni et al. / Journal of Network and Computer Applications 65 (2016) 48–7164
A.1. Case A: ðLs�1Þdmin;sZLs ηs us

The general shape of that function is given in Fig. A1. The next step is to find expressions of the intervals delimiters (lim1, lim2, lim3 and
lim4) and the corresponding gain values (Gainðlim1; sÞ, Gainðlim2; sÞ, Gainðlim3; sÞ and Gainðlim4; sÞ).
1. lim1 and Gainðlim1; sÞ: The conditions of case I are the following:

dmin;sr
ws

Ls

dmin;sr
wsþηs Ls us

Ls
dmin;srws

8>>>>><
>>>>>:

⟹
Ls Z 1

ηs us Z 0

dmin;sr
ws

Ls
rws

dmin;sr
ws

Ls
rwsþηs Ls us

Ls

8>><
>>: ⟹wsZLs dmin;s⟹lim1 ¼ Lsdmin;s

The corresponding Gainðlim1; sÞ for case I is as follows:

Gainðlim1; sÞ ¼caseIGainðLs dmin;s; sÞ ¼caseI�
αbt :dmin;s

Fs

� Resolution of the equation Gainðws
??
; sÞ ¼ τ; 8τA ½�1; �αbt dmin;s

Fs
�

We have τA ½�1; �αbt :dmin;s
Fs

� and Gainðws
??
; sÞ ¼ τ.

This leads to Gainðws
??
; sÞA ½�1; �αbt dmin;s

Fs
�, this means that wsZLs dmin;s.

Thus, 8τA ½�1; �αbt dmin;s
Fs

�, the optimal bandwidth that should be allocated to the swarm without violating the constraint

(Gainðws; sÞZτ) is ws ¼ Ls:dmin;s

8τA �1; �αbt dmin;s

Fs

� 	
; Gainðws

??
; sÞ ¼ τ

� �
) ws ¼ Ls dmin;s

� �



Fig. A5. Final interval to be considered for Case B.

Fig. A6. General shape of the gain ratio as a function of the upload speed of the seed when maxðdmin;s; Lsðdmin;s�ηs usÞÞ ¼ dmin;s .

R. Chaabouni et al. / Journal of Network and Computer Applications 65 (2016) 48–71 65
2. lim2 and Gainðlim2; sÞ: The conditions of case II are the following:

dmin;sZ
ws

Ls
ðlim1Þ

dmin;sr
wsþη:s Ls us

Ls
dmin;srws

8>>>>><
>>>>>:

)
wsZdmin;s

wsZLs ðdmin;s�ηs usÞ

(
) wsZmax dmin;s; Lsðdmin;s�ηs usÞ

� �

) lim2 ¼max dmin;s; Lsðdmin;s�ηs usÞ
� �

⟹
CaseA

lim2 ¼ Lsðdmin;s�ηs usÞ

Let us verify whether lim1Z
?
lim2:

lim1� lim2 ¼ Ls dmin;s�Lsðdmin;s�ηs usÞ ¼ Ls dmin;s�Ls dmin;sþLs ηs us ¼ Ls ηs usZ0ðbecause LsZ1; ηsZ0 and usZ0Þ ðverified✓Þ

The corresponding Gainðlim2; sÞ for case II is as follows:

Gainðlim2; sÞ ¼caseII1�Ls dmin;s�Ls ηs us

Ls dmin;s
�αbtðLs dmin;s�Ls ηs usÞ

Fs Ls
¼ ηs us

dmin;s
�αbtðdmin;s�ηs usÞ

Fs

This formula should be verified using the gain formula for case III since the two cases share the same border lim2:

Gainðlim2; sÞ ¼caseIII1� Ls dmin;s�Ls ηs us

Ls dmin;s�Ls ηs usþηs Ls us
�αbt ðLs dmin;�Ls ηs usÞ

Fs Ls
¼ ηs us

dmin;s
�αbtðdmin;s�ηs usÞ

Fs
ðverified ✓Þ

We need now to verify whether Gainðlim2; sÞZ
??
Gainðlim1; sÞ

Gainðlim2; sÞ�Gainðlim1; sÞ ¼
ηs us

dmin;s
�αbtðdmin;s�ηs usÞ

Fs
þαbt dmin;s

Fs

ηs us

dmin;s
þαbt ηs us

Fs
Z0

Thus,

αbt :dmin;s

Fs
r ηs us

dmin;s
�αbtðdmin;s�ηs usÞ

Fs
ðverified ✓Þ

� Resolution of the equation Gainðws
??
; sÞ ¼ τ; 8τA �αbt :dmin;s

Fs
;
ηs us

dmin;s
�αbtðdmin;s�ηs usÞ

Fs

� 	

We have: Gainðws
??
; sÞ ¼ τ and τA �αbt dmin;s

Fs
;
ηs us

dmin;s
�αbtðdmin;s�ηs usÞ

Fs

� 	

This means that Gainðws
??
; sÞA �αbt dmin;s

Fs
;
ηs us

dmin;s
�αbtðdmin;s�ηs usÞ

Fs

� 	
which corresponds to the formula of the gain related to case II.

Let us try now to invert that formula in order to get an estimation of ws

Gainðws
??
; sÞ ¼ τ ⟺

case II
1� ws

Ls:dmin;s
�αbt :ws

Fs Ls
¼ τ⟺1�τ¼ws

1
Ls dmin;s

þ αbt

Fs Ls

� �
⟺ws ¼

ð1�τÞFs Ls dmin;s

Fsþdmin;s αbt



R. Chaabouni et al. / Journal of Network and Computer Applications 65 (2016) 48–7166
We can then conclude that:

8τA �αbt dmin;s

Fs
;
ηs us

dmin;s
�αbtðdmin;s�ηs usÞ

Fs

� 	
; Gainðws

??
; sÞ ¼ τ

� �
) ws ¼

ð1�τÞFs Ls dmin;s

Fþdmin;s αbt

3. lim3 and Gainðlim3; sÞ: The conditions of case III are the following:

wsþηs Ls us

Ls
rdmin;s

wsþηs Ls us

Ls
rws

8>>><
>>>:

⟹

wsrLsðdmin;s�ηs usÞðlim2Þ

wsZ
ηs Ls uq

Ls�1

8><
>: ⟹lim3 ¼

ηs Ls us

Ls�1

Let us verify whether lim2Z
?
lim3:

lim2� lim3 ¼ Lsðdmin;s�ηs usÞ�
ηs Ls us

Ls�1
¼ Ls
Ls�1

Lsðdmin;s�ηs usÞ�dmin;s
� �

Z0ðbecause Ls41 and dmin;srLsðdmin;s�ηs usÞÞ ðverified ✓Þ

The corresponding Gainðlim3; sÞ for case III is:

Gainðlim3; sÞ ¼caseIIIGain
ηs Ls us

Ls�1
; s

� �
¼caseIII1�

ηs Ls us

Ls�1
ηs Ls us

Ls�1
þηs Ls us

�
αbt

ηsLs us

Ls�1
Fs Ls

¼ 1� ηs Ls us

ηs Ls usþηs Ls usðLs�1Þ�
αbt ηs us

ðLs�1ÞFs
¼ 1� 1

Ls
� αbt ηs us

ðLs�1Þ Fs

This expression needs to be verified also using the gain formula for case IV since the two cases share the same border lim3:

Gainðlim3; sÞ ¼caseIVGain
ηs Ls us

Ls�1
; s

� �
¼caseIV1� 1

Ls
�
αbt

ηs Ls us

Ls�1

� �
Fs Ls

¼ 1� 1
Ls
� αbt ηs us

ðLs�1ÞFs
We need now to verify whether Gainðlim3; sÞZ

??
Gainðlim2; sÞ

Gainðlim3; sÞ�Gainðlim2; sÞ ¼ 1� 1
Ls
� αbt ηs us

ðLs�1ÞFs
� ηs us

dmin;s
�αbtðdmin;s�ηs usÞ

Fs

� �

¼ 1� 1
Ls
� ηs us

dmin;s
þαbt dmin;s

Fs
�αbt ηs us

Fs
1þ 1

Ls�1

� �
¼ 1� 1

Ls
� ηs us

dmin;s

� 	
þ αbt dmin;s

Fs
�αbt ηs us Ls

FsðLs�1Þ

� 	

¼ Lsðdmin;s�ηs usÞ�dmin;s
� � 1

Ls dmin;s
þ αbt

FsðLs�1Þ

� �
Z0ðsince all the terms areZ0; Ls41 and ðdmin;srLsðdmin;s�ηs usÞÞ

Thus,

ηs us

dmin;s
�αbtðdmin;s�ηs usÞ

Fs
r1� 1

Ls
� αbt ηs us

ðLs�1ÞFs
ðverified ✓Þ

� Resolution of the equation Gainðws
??
; sÞ ¼ τ; 8τA ηs us

dmin;s
�αbtðdmin;s�ηs usÞ

Fs
;1� 1

Ls
� αbt ηs us

ðLs�1ÞFs

� 	

We have: Gainðws
??
; sÞ ¼ τ and τA

ηs us

dmin;s
�αbtðdmin;s�ηs usÞ

Fs
;1� 1

Ls
� αbt ηs us

ðLs�1ÞFs

� 	

This means that Gainðws
??
; sÞA ηs us

dmin;s
�αbtðdmin;s�ηs usÞ

Fs
;1� 1

Ls
� αbt ηs us

ðLs�1ÞFs

� 	
which corresponds to the formula of the gain related to case III.

Let us try now to invert that formula in order to get an estimation of ws

Gainðws
??
; sÞ ¼ τ ⟺

case III
1� ws

wsþηs Ls us
�αbt ws

Fs Ls
¼ τ

Since the resolution of this equation is too complex, we tried to simplify it by introducing the following symbols: a¼ ηs Ls us, b¼ αbt
Fs Ls

and c¼ τ. The simplified equation becomes:

1� ws

wsþa
�b ws ¼ c

To solve this second degree equation, we used an online solver.7 We obtained the following solutions:

ws1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 b2�2 a b cþ4 a bþc2

p
�a b�c

2 b
ws2 ¼

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 b2�2 a b cþ4 a bþc2

p
þa bþc


 �
2 b
7 The online solver is available at: http://www.wolframalpha.com

http://www.wolframalpha.com


R. Chaabouni et al. / Journal of Network and Computer Applications 65 (2016) 48–71 67
Clearly, ws2 o0 so it cannot be considered as a solution. Then, we can conclude that:

8τA ηs us

dmin;s
�αbtðdmin;s�ηs usÞ

Fs
;1� 1

Ls
� αbt ηs us

ðLs�1ÞFs

� 	
; Gainðws

??
; sÞ ¼ τ

� �
) ws ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 b2�2 a b cþ4 a bþc2

p
�a b�c

2 b

where a¼ ηs Ls us, b¼
αbt

Fs Ls
, and c¼ τ

4. lim4 and Gainðlim4; sÞ: The conditions of case IV are the following:

wsr
wsþηs Ls us

Ls
wsrdmin;s

8><
>: ⟹

wsr
ηs Ls u
Ls�1

ðlim2Þ
wsrdmin;s

8><
>:

We need to compare dmin;s and
ηs Ls us
Ls �1 in order to verify lim3.

dmin;s�
ηs Ls us

Ls�1
¼ ðLs�1Þdmin;s�ηs Ls us

Ls�1
¼ Lsðdmin;s�ηs usÞ�dmin;s

Ls�1
Z0ðbecause Ls41 and dmin;srLsðdmin;s�ηs usÞÞ ðverified ✓Þ

Thus lim3's definition is correct and there no analytic definition for lim4. We can suppose that it can be equal to 0 since ws can only be
positive (or equal to 0). So we can suppose that lim4 ¼ 0 even thought attaining that limit means that the download might be inter-
rupted.
We need now to calculate limws-0Gainðws; sÞ that will be considered the upper bound of the gain values

lim
ws-0

Gainðws; sÞð Þ ¼caseIV lim
ws-0

1� 1
Ls
�αbt :ws

F:Ls

� �
¼ 1� 1

Ls

� Resolution of the equation Gainðws
??
; Sf ; FÞ ¼ τ; 8τA 1� 1

Ls
� αbt ηs us

ðLs�1ÞFs
;1� 1

Ls

� 	

We have: Gainðws
??
; sÞ ¼ τ and τA 1� 1

Ls
� αbt ηs us

ðLs�1ÞFs
;1� 1

Ls

� 	

This means that Gainðws
??
; sÞA 1� 1

Ls
� αbt ηs us

ðLs�1ÞFs
;1� 1

Ls

� 	
which corresponds to the formula of the gain related to case IV. Let us try now to

invert that formula in order to get an estimation of ws:

Gainðws
??
; sÞ ¼ τ ⟺

case IV
1� 1

Ls
�αbt ws

Fs Ls
¼ τ⟺

αbt ws

Fs Ls
¼ 1� 1

Ls
�τ⟺ws ¼

Fs Ls
αbt

Lsð1�τÞ�1
Ls

� �
⟺ws ¼

Fs Lsð1�τÞ�1½ �
αbt

We can then conclude that:

8τA 1� 1
Ls
� αbt η u
ðLs�1ÞFs

;1� 1
Ls

� 	
; Gainðws

??
; sÞ ¼ τ

� �
) ws ¼

Fs Lsð1�τÞ�1½ �
αbt

General conclusion for Case A: ws ¼ f ðτÞ
The equation Gainðws

??
; sÞ ¼ τ has the following solution:

wbt
s ¼

Ls dmin;s; 8τA �1; �αbtdmin;s

Fs

� 	
ð1�τÞFs Ls dmin;s

Fsþdmin;s αbt
; 8τA �αbt dmin;s

Fs
;
ηs us

dmin;s
�αbtðdmin;s�ηs usÞ

Fs

� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2b2�2abcþ4abþc2

p
�ab�c

2 b
; 8τA ηs us

dmin;s
�αbtðdmin;s�ηs usÞ

Fs
;1� 1

Ls
� αbt ηs us

ðLs�1ÞFs

� 	
Fs Lsð1�τÞ�1½ �

αbt
; 8τA 1� 1

Ls
� αbt ηs us

ðLs�1ÞFs
;1� 1

Ls

� 	

∄; 8τA 1� 1
Ls

; þ1
� 	

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

Where:

a¼ ηs Ls us; b¼
αbt

Fs Ls
and c¼ τ

A.2. Case B: ðLs�1Þdmin;srLs ηs us

In this case, the intervals and the delimiters are not as evident as in Case A. So let us start first by studying the limits in the gain cases
and try to locate the cases based on their order.



R. Chaabouni et al. / Journal of Network and Computer Applications 65 (2016) 48–7168
A.2.1. Fixing the interval delimiters
For each interval we part from its constraints and determine the range of values pf ws in each of these intervals. The goal is to verify if

these intervals are disjoint and do not superimpose (Figs. A2 and A3).
1. lim1: (case I)

dmin;sr
ws

Ls

dmin;sr
wsþηs Ls us

Ls
dmin;srws

8>>>>><
>>>>>:

) dmin;sr
ws

Ls
) wsZ lim1 ¼ Ls dmin;s

2. lim2: (case II)

dmin;sZ
ws

Ls

dmin;sr
wsþηs Ls us

Ls
dmin;srws

8>>>>><
>>>>>:

⟹

wsrLs dmin;s ¼ lim1

wsZdmin;s

wsZLsðdmin;s�ηs usÞ

8><
>: ⟹

Case B wsr lim1

wsZdmin;s ¼ lim2

(

Comparing lim1 and lim2: We know that Ls41 and dmin;s40 Thus Ls dmin;s4dmin;s ) lim14 lim2

3. lim3 and lim2pðcase IIIÞ
wsþηs Ls us

Ls
rdmin;s

wsþηs Ls us

Ls
rws

8>>><
>>>:

⟹

wsrLsðdmin;s�ηs usÞ ¼ lim2p

wsZ
η Ls us

Ls�1
¼ lim3

8><
>:

Comparing lim2p and lim2: Based on the conditions of Case B, we already know that lim2pr lim2

Comparing lim3 and lim2:

lim3� lim2 ¼
ηs Ls us

Ls�1
�dmin;s ¼

ηs Ls us�ðLs�1Þdmin;s

Ls�1
¼ 1
Ls�1

dmin;s�Lsðdmin;s�ηs usÞ
� �

Z0ðbecause Ls41 and dmin;sZLsðdmin;s�ηs usÞÞ ) lim3Z lim2

Comparing lim3 and lim1:

lim3� lim1 ¼
ηs Ls us

Ls�1
�Ls dmin;s ¼

ηs Ls us�LsðLs�1Þ:dmin;s

Ls�1

Lsðdmin;s�ηs usÞ�L2s dmin;s


 �
Ls�1

We have LsZ1 ) L2s Z1 & dmin;sZ0 ) L2s :dmin;sZdmin;s

and since
dmin;sZLsðdmin;s�ηs usÞ
L2s dmin;sZdmin;s

(
) L2s dmin;sZLsðdmin;s�ηs usÞ

Thus lim3� lim1r0 ) lim1Z lim3

4. lim4: (case IV)

wsr
wsþηs Ls us

Ls
wsrdmin;s

8><
>: )

wsr
ηs Ls us

Ls�1
wsrdmin;s

8><
>: )

wsr lim3

wsr lim2

(
⟹

lim3 Z lim2
wsr lim2

A.2.2. Interpretation of the superimposed cases
Based on Fig. A4, we can distinguish 3 intervals where there are superimposed cases which are:

� Interval 1. �1; lim2p
� �¼ �1; Lsðdmin;s�ηs usÞ

� �
: superimposition of case IV and case III

� Interval 2. lim3; lim1
� �¼ ηs Ls us

Ls �1 ; Ls dmin;s

h i
: superimposition of case II and case III

� Interval 3. lim1; þ1 ¼ Ls dmin;s; þ1� ���
: superimposition of case I and case III

Let us check interval by interval the implications of such a superimposition. For each interval we will define the new constraints resulting
from the intersection of the corresponding cases and define accordingly the gain expression. The goal is to demonstrate that the solution
will be the same for both cases.



R. Chaabouni et al. / Journal of Network and Computer Applications 65 (2016) 48–71 69
i. Interval 1:

Case IV :

wsrdmin;s

wsr
wsþηs Ls us

Ls

8><
>:

Case III :

wsþηs Ls us

Ls
rdmin;s

wsþηs Ls us

Ls
rws

8>>><
>>>:

8>>>>>>>>>>><
>>>>>>>>>>>:

) ws ¼wsþηs Ls us

Ls
rdmin;s ) ws ¼ Ls ηs us

Ls�1

Verification of the gain expression in both cases: Let us now verify that Gainðws; sÞ has the same expression in both cases IV and III when
ws ¼ ηs Ls us

Ls �1 .

Gain
Ls ηs us

Ls�1
; s

� �
¼case IV1� 1

Ls
�
αbt

ηs Ls us

Ls�1
Fs Ls

¼ 1� 1
Ls

� αbt ηs us

Fs ðLs�1Þ

Gain
ηs Ls us

Ls�1
; s

� �
¼case III1�

ηs Ls us

Ls�1
ηs Ls us

Ls�1
þηs Ls us

�
αbt :

ηs Ls us

Ls�1
Fs Ls

¼ 1� 1
1þðLs�1Þ �

αbt :ηs us

Fs ðLs�1Þ ¼ 1� 1
Ls

� αbt :ηs us

Fs ðLs�1Þ

For this interval, both cases have the same expression. Thus, we can just consider just one of the cases instead of working with both.
The best choice seems to be case IV since it has a simpler formulas.

ii. Interval 2:

Case II :

dmin;sZ
ws

Ls

dmin;sr
wsþηs Ls us

Ls
dmin;srws

8>>>>><
>>>>>:

Case III :

wsþηs Ls us

Ls
rdmin;s

wsþηs Ls us

Ls
rws

8>>><
>>>:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

) ws

Ls
rdmin;s ¼

wsþηs Ls us

Ls
rws

) ws ¼ Ls dmin;s�ηs us
� �

Verification of the gain expression in both cases: Let us now verify that Gainðws; sÞ has the same expression in both cases II and III when
ws ¼ Lsðdmin;s�ηs usÞ:

GainðLs dmin;s; sÞ ¼case II1�Lsðdmin;s�ηs usÞ
Lsdmin;s

�αbt Lsðdmin;s�ηs usÞ
Fs Ls

GainðLs dmin;s; sÞ ¼case III1� Lsðdmin;s�ηs usÞ
Lsðdmin;s�ηs usÞþηs Ls us

�αbt Lsðdmin;s�ηs usÞ
Fs Ls

¼ 1�Lsðdmin;s�ηs usÞ
Ls dmin;s

�αbt Lsðdmin;s�ηs usÞ
Fs Ls

For this interval, both cases have the same expression. Thus, we can just consider just one of the cases instead of working with both.
The best choice seems to be case II since it has simpler formulas.

iii. Interval 3: Constraints definition:

Case I :

dmin;sr
ws

Ls

dmin;sr
wsþηs Ls us

Ls
dmin;srws

8>>>>><
>>>>>:

Case III :

wsþηs Ls us

Ls
rdmin;s

wsþηs Ls us

Ls
rws

8>>><
>>>:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

⟹
Ls 41

dmin;s ¼
wsþηs Ls us

Ls
rws

Ls

⟹

LsZ1
ηs usZ0 dmin;s ¼ ws þηs Ls us

Ls

ηs Ls us ¼ 0

(
) ws ¼ Ls dmin;s



R. Chaabouni et al. / Journal of Network and Computer Applications 65 (2016) 48–7170
Verification of the gain expression in both cases: Let us now verify that Gainðws; sÞ has the same expression in both cases II and III when
ws ¼ Ls dmin;s:

GainðLs:dmin;s; sÞ ¼case III1� Ls dmin;s

Ls dmin;sþηs Ls us
�αbt Ls dmin;s

Fs Ls
¼ηs us ¼ 0

1�1�αbt dmin;s

Fs
¼ �αbt dmin;s

Fs
¼case IGainðLs dmin;s; sÞ

For this interval, both cases have the same expression. Thus, we can just consider just one of the cases instead of working with both.
The best choice seems to be case I since it has a simpler formulas.

After the verification of the superimposed intervals, we can just consider the following intervals (Fig. A5).

A.2.3. Inverting the gain
The goal of this section is to derive a potential equation of the gain ratio as a function of the seed's upload speed. The general shape of

that function is given in Fig. A1. We have already defined the intervals delimiters (lim1 and lim2) and lim3 is the lower bound of ws (that is
0). We just need to verify the corresponding gain values Gainðlim1; sÞ;Gainðlim2; sÞ and Gainðlim3; sÞð Þ that should be equal to the ones
already defined in Case A (Fig. A6).
1. lim1 and Gainðlim1; sÞ: We have already found that lim1 ¼ Ls dmin;s. The corresponding gain has been already calculated and verified for

both case I and case II. It is equal to: Gainðlim1; sÞ ¼ �αbt dmin;s
Fs

.

� Resolution of the equation Gainðws
??
; sÞ ¼ τ; 8τA ��1; �αbt dmin;s

Fs
�

Since τA ��1; �αbt dmin;s
Fs

� and Gainðws
??
; sÞ ¼ τ.

This leads to Gainðws
??
; sÞA �1; �αbt dmin;s

Fs

h i
, this means that wsZLs dmin;s.

Thus, 8τA �1; �αbt dmin;s
Fs

h i
, the optimal bandwidth that should be allocated to the swarm without violating the constraint

(Gainðws; sÞZτ) is ws ¼ Ls dmin;s

8τA �1; �αbt dmin;s

F

� 	
; Gainðws

??
; sÞ ¼ τ

� �
) ws ¼ Ls dmin;s

� �

2. lim2 and Gainðlim2; sÞ: We have already found that lim2 ¼ dmin;s. Now, we need to calculate Gainðdmin;s; sÞ for both cases II and IV and we
should obtain the same value to which we will refer to as: Gainðlim2; sÞ

Gainðdmin;s; sÞ ¼case II1� dmin;s

Ls dmin;s
�αbt dmin;s

Fs Ls
¼ 1� 1

Ls
�αbt dmin;s

Fs Ls
¼case IVGainðdmin;s; sÞ

We obtain finally that: Gainðlim2; sÞ ¼ 1� 1
Ls
�αbt dmin;s

Fs Ls
.

� Resolution of the equation Gainðws
??
; sÞ ¼ τ; 8τA �αbt dmin;s

Fs
;1� 1

Ls
�αbt dmin;s

Fs Ls

h i
Since τA �αbt dmin;s

Fs
;1� 1

Ls
�αbt dmin;s

Fs Ls

h i
and Gainðws

??
; sÞ ¼ τ.

This leads to Gainðws
??
; sÞA �αbt dmin;s

Fs
;1� 1

Ls
�αbt dmin;s

Fs Ls

h i
, which corresponds to the formula of the gain related to case II.

Let us try now to invert that formula in order to get an estimation of ws

Gainðws
??
; sÞ ¼ τ ⟺

case II
1� ws

Ls dmin;s
�αbt ws

Fs Ls
¼ τ⟺1�τ¼ws

1
Ls dmin;s

þ αbt

Fs Ls

� �
⟺1�τ¼ws

Fsþdmin;s αbt

Fs Ls dmin;s

� �
⟺ws

¼ ð1�τÞFs Ls dmin;s

Fsþdmin;s αbt

We can then conclude that:

8τA �αbt dmin;s

Fs
;1� 1

Ls
�αbt dmin;s

Fs Ls

� 	
; Gainðws

??
; sÞ ¼ τ

� �
) ws ¼

ð1�τÞFs Ls dmin;s

Fsþdmin;s αbt

3. lim3 and Gainðlim3; sÞ: the definition of these parameters is very similar to the one done for lim4 and Gainðlim4; sÞ in Case A.
Since ws can only be positive (or equal to 0), we can suppose that lim3 ¼ 0 even thought attaining that limit means that the download
might be interrupted.
We need now to calculate limws-lim3

Gainðws; sÞ that will be considered as the upper bound of the gain values:

lim
ws-lim3

Gainðws; sÞð Þ ¼caseIV lim
ws-0

1� 1
Ls
�αbt :ws

Fs Ls

� �
¼ 1� 1

Ls
¼ Gainðlim3; sÞ

� Resolution of the equation Gainðws
??
; sÞ ¼ τ; 8τA 1� 1

Ls
�αbt dmin;s

Fs Ls
;1� 1

Ls

h i
We have: Gainðws

??
; sÞ ¼ τ and τA 1� 1

Ls
�αbt dmin;s

Fs Ls
;1� 1

Ls

h i

This means that Gainðws
??
; sÞA 1� 1

Ls
�αbt dmin;s

Fs Ls
;1� 1

Ls

h i
which corresponds to the formula of the gain related to case IV.



R. Chaabouni et al. / Journal of Network and Computer Applications 65 (2016) 48–71 71
Let's try now to invert that formula in order to get an estimation of ws

Gainðws
??
; sÞ ¼ τ ⟺

case IV
1�1

L
�αbt ws

Fs Ls
¼ τ⟺

αbt ws

Fs Ls
¼ 1� 1

Ls
�τ⟺ws ¼ Fs Ls

αbt

Lsð1�τÞ�1
Ls

� �
⟺ws ¼ Fs Lsð1�τÞ�1½ �

αbt

We can then conclude that:

8τA 1� 1
Ls
�αbt dmin;s

Fs Ls
;1� 1

Ls
; Gainðws

??
; sÞ ¼ τ

� �
) ws ¼ Fs Ls ð1�τÞ�1ð Þ

αbt

��
ðA:1Þ

General conclusion for Case B: ws ¼ f ðτÞ
The equation: Gainðws

??
; sÞ ¼ τ has the following solution:

wbt
s ¼

Ls dmin;s; 8τA �1; �αbt dmin;s

Fs

� 	
ð1�τÞFs Ls:dmin;s

Fsþdmin;s αbt
; 8τA �αbt dmin;s

Fs
;1� 1

Ls
�αbt dmin;s

Fs Ls

� 	
Fs Lsð1�τÞ�1½ �

αbt
; 8τA 1� 1

Ls
�αbt dmin;s

Fs Ls
;1� 1

Ls

� 	

∄; 8τA 1� 1
Ls

; þ1
� 	

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:
References

Carbunaru C, Teo YM, Leong B, Ho T. Modeling flash crowd performance in peer-to-peer file distribution. IEEE Trans Parallel Distrib Syst 2014;25(10):2617–26. http://dx.doi.
org/10.1109/TPDS.2013.220.

Chaabouni R, Garcia Lopez P, Sanchez Artigas M, Ferrer Celma S, Cebrian C. Boosting content delivery with BitTorrent in online cloud storage services. In: 2013 IEEE thirteenth
international conference on peer-to-peer computing (P2P); 2013. p. 1–2. http://dx.doi.org/10.1109/P2P.2013.6688731.

Chaabouni R, Sanchez-Artigas M, Garcia-Lopez P. Reducing costs in the personal cloud: is bittorrent a better bet?. In: 14-th IEEE international conference on peer-to-peer
computing (P2P); 2014. p. 1–10. http://dx.doi.org/10.1109/P2P.2014.6934302.

Cohen B. Incentives Build Robustness in BitTorrent; 2003.
Drago I, Mellia M, Munafo MM, Sperotto A, Sadre R, Pras A. Inside dropbox: understanding personal cloud storage services. In: Proceedings of the 2012 ACM conference on

internet measurement conference, IMC '12. Boston, Massachusetts, USA,: ACM; 2012. p. 481–94. http://dx.doi.org/10.1145/2398776.2398827.
Drago I, Bocchi E, Mellia M, Slatman H, Pras A. Benchmarking personal cloud storage. In: Proceedings of the 2013 conference on Internet measurement conference. ACM;

2013. p. 205–12.
Drago I. Understanding and monitoring cloud services [Ph.D. thesis]. University of Twente; 2013.
Dropbox, Inc., Dropbox for Business Security: A Dropbox Whitepaper. 〈https://www.dropbox.com/static/business/resources/dfb_security_whitepaper.pdf〉.
Garcia-Lopez P, Sanchez-Artigas M, Cotes C, Guerrero G, Moreno M, Toda S. StackSync: architecturing the personal cloud to Be in sync. 〈http://stacksync.org/wp-content/

uploads/2013/11/stacksync_full_paper.pdf〉.
Garcia-Lopez PG, Sanchez-Artigas M, Toda S, Cotes C, Lenton J. StackSync: bringing elasticity to dropbox-like file synchronization. In: Proceedings of the 15th international

middleware conference, middleware '14. New York, NY, USA: ACM; 2014. p. 49–60. http://dx.doi.org/10.1145/2663165.2663332.
Gracia-Tinedo R, Sanchez Artigas M, Moreno-Martinez A, Cotes C, Garcia Lopez P. Actively measuring personal cloud storage. In: 2013 IEEE sixth international conference on

cloud computing (CLOUD); 2013. p. 301–8. http://dx.doi.org/10.1109/CLOUD.2013.25.
Izal M, Urvoy-Keller G, Biersack EW, Felber PA, Al Hamra A, Garces-Erice L. Dissecting bittorrent: five months in a torrent's lifetime. In: Passive and active network mea-

surement, Springer, 2004. p. 1–11.
Karagiannis T, Rodriguez P, Papagiannaki K. Should internet service providers fear peer-assisted content distribution?. In: Proceedings of the 5th ACM SIGCOMM conference

on internet measurement, IMC '05. Berkeley, CA, USA: USENIX Association; 2005. p. 63–76. 〈http://dl.acm.org/citation.cfm?id¼1251086.1251092〉.
Kumar R, Ross K. Peer-assisted file distribution: the minimum distribution time. In: 2006 1st IEEE workshop on Hot topics in web systems and technologies, HOTWEB '06;

2006. p. 1–11. http://dx.doi.org/10.1109/HOTWEB.2006.355259.
Leon X, Chaabouni R, Sanchez Artigas M, Garcia Lopez P. Smart cloud seeding for BitTorrent in datacenters. IEEE Internet Comput 2014;18(4):47–54. http://dx.doi.org/

10.1109/MIC.2014.43.
Peterson R, Sirer EG. AntFarm: efficient content distribution with managed swarms. In: NSDI; 2009. p. 107–22.
Piatek M, Isdal T, Anderson T, Krishnamurthy A, Venkataramani A. Do incentives build robustness in bit torrent. In: Proceedings of the 4th USENIX conference on networked

systems design and implementation, NSDI'07. Berkeley, CA, USA: USENIX Association; 2007. p. 1–1. 〈http://dl.acm.org/citation.cfm?id¼1973430.1973431〉.
Pouwelse J, Garbacki P, Epema D, Sips H. The bittorrent p2p file-sharing system: measurements and analysis. In: Peer-to-Peer systems IV. Springer; Berlin, Heidelberg: 2005.

p. 205–16.
Qiu D, Srikant R. Modeling and performance analysis of bittorrent-like peer-to-peer networks. In: Proceedings of the 2004 conference on applications, technologies,

architectures, and protocols for computer communications, SIGCOMM '04. New York, NY, USA: ACM; 2004. p. 367–78. http://dx.doi.org/10.1145/1015467.1015508.
Reich J, Laadan O, Brosh E, Sherman A, Misra V, Nieh J, Rubenstein D. VMtorrent: virtual appliances on-demand. In: SIGCOMM; 2010. p. 453–4.
Schmidt M, Fallenbeck N, Smith M, Freisleben B. Efficient distribution of virtual machines for cloud computing. In: 2010 18th Euromicro international conference on parallel,

distributed and network-based processing (PDP); 2010. p. 567–74. http://dx.doi.org/10.1109/PDP.2010.39.
Sharma A, Venkataramani A, Rocha A. Pros amp; cons of model-based bandwidth control for client-assisted content delivery. In: 2014 sixth international conference on

communication systems and networks (COMSNETS); 2014. p. 1–8.
Sweha R, Ishakian V, Bestavros A. Angels in the cloud: a peer-assisted bulk-synchronous content distribution service. In: 2011 IEEE international conference on cloud

computing (CLOUD); 2011. p. 97–104. http://dx.doi.org/10.1109/CLOUD.2011.84.
Tinedo RG, Tian Y, Sampé J, Harkous H, Lenton J, López PG, Artigas MS, Vukolic M. Dissecting UbuntuOne: autopsy of a global-scale personal cloud back-end. In: Proceedings

of the 2015 ACM internet measurement conference, IMC 2015. Tokyo, Japan, 28–30 October 2015; 2015. p. 155–68. http://dx.doi.org/10.1145/2815675.2815677. URL
〈http://doi.acm.org/10.1145/2815675.2815677〉.

Wartel R, Cass T, Moreira B, Roche E, Guijarro M, Goasguen S, Schwickerath U. Image distribution mechanisms in large scale cloud providers. In: 2010 IEEE second inter-
national conference on cloud computing technology and science (CloudCom); 2010. p. 112–117. http://dx.doi.org/10.1109/CloudCom.2010.73.

Wei B, Fedak G, Cappello F. Scheduling independent tasks sharing large data distributed with BitTorrent. In: 2005 The 6th IEEE/ACM international workshop on Grid
computing; 2005. p. 8. http://dx.doi.org/10.1109/GRID.2005.1542745.

http://dx.doi.org/10.1109/TPDS.2013.220
http://dx.doi.org/10.1109/TPDS.2013.220
http://dx.doi.org/10.1109/TPDS.2013.220
http://dx.doi.org/10.1109/TPDS.2013.220
dx.doi.org/10.1109/P2P.2013.6688731
dx.doi.org/10.1109/P2P.2014.6934302
dx.doi.org/10.1145/2398776.2398827
https://www.dropbox.com/static/business/resources/dfb_security_whitepaper.pdf
http://stacksync.org/wp-content/uploads/2013/11/stacksync_full_paper.pdf
http://stacksync.org/wp-content/uploads/2013/11/stacksync_full_paper.pdf
dx.doi.org/10.1145/2663165.2663332
dx.doi.org/10.1109/CLOUD.2013.25
http://dl.acm.org/citation.cfm?id=1251086.1251092
http://dl.acm.org/citation.cfm?id=1251086.1251092
http://dl.acm.org/citation.cfm?id=1251086.1251092
http://dl.acm.org/citation.cfm?id=1251086.1251092
dx.doi.org/10.1109/HOTWEB.2006.355259
http://dx.doi.org/10.1109/MIC.2014.43
http://dx.doi.org/10.1109/MIC.2014.43
http://dx.doi.org/10.1109/MIC.2014.43
http://dx.doi.org/10.1109/MIC.2014.43
http://dl.acm.org/citation.cfm?id=1973430.1973431
http://dl.acm.org/citation.cfm?id=1973430.1973431
http://dl.acm.org/citation.cfm?id=1973430.1973431
http://dl.acm.org/citation.cfm?id=1973430.1973431
dx.doi.org/10.1145/1015467.1015508
dx.doi.org/10.1109/PDP.2010.39
dx.doi.org/10.1109/CLOUD.2011.84
dx.doi.org/10.1145/2815675.2815677
http://doi.acm.org/10.1145/2815675.2815677
dx.doi.org/10.1109/CloudCom.2010.73
dx.doi.org/10.1109/GRID.2005.1542745

	The power of swarming in personal clouds under bandwidth budget
	Introduction
	Related work
	Background
	The BitTorrent protocol
	Personal cloud systems

	System architecture
	Security concerns

	Bandwidth allocation: problem and solution
	Problem description
	Download time in HTTP Thttp
	Download time in BitTorrent Tbt
	The gain ratio
	Solving the equation Gain(wsbt??,s)geτ

	Bandwidth allocation and protocol management algorithm
	Algorithm description

	Validation of the algorithm: application to the personal cloud scenario
	The Ubuntu One trace
	Experimental settings
	Results
	Modified trace: bigger shared files: results
	Algorithm's performance

	Conclusions
	Acknowledgments
	Inverting the gain formulas: solving the equation: Gain(ws??,s)equalτ
	Case A: (Ls-1)dmin,sgeLsηsus
	Case B: (Ls-1)dmin,sleLsηsus
	Fixing the interval delimiters
	Interpretation of the superimposed cases
	Inverting the gain


	References




