
Flexible Scheduling of Distributed
Analytic Applications

Francesco Pace∗, Daniele Venzano∗, Damiano Carra† and Pietro Michiardi∗
∗Data Science Department, Eurecom, Biot Sophia-Antipolis, France
†Computer Science Department, University of Verona, Verona, Italy

Email: ∗{name.surname}@eurecom.fr, †damiano.carra@univr.it

Abstract—This work addresses the problem of scheduling
user-defined analytic applications, which we define as high-level
compositions of frameworks, their components, and the logic
necessary to carry out work. The key idea in our application
definition, is to distinguish classes of components, including rigid
and elastic types: the first being required for an application to
make progress, the latter contributing to reduced execution times.
We show that the problem of scheduling such applications poses
new challenges, which existing approaches address inefficiently.

Thus, we present the design and evaluation of a novel, flexible
heuristic to schedule analytic applications, that aims at high
system responsiveness, by allocating resources efficiently. Our
algorithm is evaluated using trace-driven simulations, with large-
scale real system traces: our flexible scheduler outperforms a
baseline approach across a variety of metrics, including applica-
tion turnaround times, and resource allocation efficiency.

We also present the design and evaluation of a full-fledged
system, which we have called Zoe, that incorporates the ideas
presented in this paper, and report concrete improvements in
terms of efficiency and performance, with respect to prior
generations of our system.

I. INTRODUCTION

The last decade has witnessed the proliferation of numerous
distributed frameworks to address a variety of large-scale
data analytics and processing projects. First, MapReduce [1]
has been introduced to facilitate the processing of bulk data.
Subsequently, more flexible tools, such as Dryad [2], Spark [3]
and Naiad [4], to name a few, have been conceived to address
the limitations and rigidity of the MapReduce programming
model. Similarly, specialized libraries [5] and systems like
TensorFlow [6] have seen the light to cope with large-scale
machine learning problems. In addition to a fast growing
ecosystem, individual frameworks are driven by a fast-pace
development model, with new releases every few months,
introducing substantial performance improvements. Since each
framework addresses specific needs, users are left with a wide
choice of tools and combination thereof, to address the various
stages of their projects.

The context depicted above has driven a lot of research
[7]–[19] in the area of resource allocation and scheduling,
both from academia and the industry. These efforts materialize
in cluster management systems that offer simple mechanisms
for users to request the deployment of the framework they
need. The general underlying idea is that of sharing cluster
resources among a heterogeneous set of frameworks, as a
response to static partitioning, which has been dismissed for

it entails low resource utilization [7]–[9]. Existing systems
divide the resources at different levels. Some of them, e.g.
Mesos and YARN, target low-level orchestration of distributed
computing frameworks: to this aim, they require non-trivial
modifications of such frameworks to operate correctly. Oth-
ers, e.g. Kubernetes [20] and Docker Swarm [21], focus
on provisioning and deployment of containers, and are thus
oblivious to the characteristics of the frameworks running in
such containers. To the best of our knowledge, no existing
tool currently addresses the problem of scheduling analytic
applications as a whole, leveraging the intrinsic properties of
the frameworks such applications use, but without requiring
substantial modification of such frameworks.

The endeavor of this paper is to fill the gap that exists
in current approaches, and raise the level of abstraction at
which scheduling works. We introduce a general and flexible
definition of applications, how they are composed, and how to
execute them. For example, a user application addressing the
training of a statistical model involves: a user-defined program
implementing a learning algorithm, a framework (e.g., Spark)
to execute such a program together with information about
its resource requirements, the location for input and output
data and possibly hyper-parameters exposed as application
arguments. Users should be able to express, in a simple way,
how such an application must be packaged and executed,
submit it, and expect results as soon as possible.

We show that scheduling such applications represents a de-
parture from what has been studied in the scheduling literature,
and present the design of a new algorithm to address the prob-
lem. A key insight of our approach is to exploit the properties
of the frameworks used by an application, and distinguish their
components according to classes, core and elastic: the first
being required for an application to produce work, the latter
contributing to reduced execution times. Our heuristic focuses
cluster resources to few applications, and uses the class of
application components to pack them efficiently. Our scheduler
aims at high cluster allocation and a responsive system. It can
easily accommodate a variety of scheduling policies, beyond
the traditional “first-come-first-served” or “processor sharing”
strategies, that are currently used by most existing approaches.
We study the performance of our scheduler using realistic,
large-scale workload traces from Google [22] [23], and show it
consistently outperforms the existing baseline approach which
ignores component classes: application turnaround times are

more than halved, and queuing times are drastically reduced.
This induces fewer applications waiting to be served, and in-
creases resource allocation up to 20% more than the baseline.

Finally, we present a full-fledged system, called Zoe, that
schedules analytic applications according to our original al-
gorithm and that can use sophisticated policies to determine
application priorities. Our system exposes a simple and ex-
tensible configuration language that allows application def-
inition. We validate our system with real-life experiments,
and report conspicuous improvements when compared to a
baseline scheduler, when using a representative workload:
median turnaround times are reduced by up to 37% and median
resource allocation is 20% higher.

In summary, the contributions of our work are as follows:
• We define, for the first time, a high-level construct to

represent analytic applications, focusing on their hetero-
geneity, and their end-to-end life-cycle;

• We establish a new scheduling problem, and propose a
flexible heuristic capable of handling heterogeneous re-
quests, as well as a variety of scheduling policies, with the
ultimate objective of improving system responsiveness
under heavy loads;

• We evaluate our scheduling policy using realistic, large-
scale workload traces and show it consistently outper-
forms the baseline approach;

• We build a system prototype which materializes the ideas
of analytic applications and their scheduling. Our system
has been in use for over one year, serving a variety of
analytic application workloads. Using our new heuristic,
we were able to achieve substantial improvements in
terms of system responsiveness and cluster allocation.

This paper is organized as follows. We define analytic ap-
plications, give examples and formulate our problem statement
in Section II. We describe our flexible scheduling heuristic, in
Section III, which we evaluate using simulations in Section IV.
The system implementation is described in Section V, and its
evaluation is presented in Section VI. Finally, in Section VII
and Section VIII we discuss related work and conclude.

II. DEFINITIONS AND PROBLEM STATEMENT

A. Definitions

We define a data analytics framework as a set of one or
more software components (executable binaries) to accom-
plish some data processing tasks. Distributed frameworks are
generally composed by a controller, a master and a number
of worker components. Examples of distributed frameworks
are Apache Spark [24], Google TensorFlow [25] and MPI
[26]. Another example of simple data analytics framework we
consider is an interactive Notebook [27].

Distributed frameworks require a scheduler to orchestrate
their work: they execute jobs, each of which consists of one
or more tasks that run in parallel the same program. Such
schedulers operate at the task level: they assign tasks to
workers, and they are highly specialized to take into account
the peculiarities of each framework.

Framework schedulers such as Mesos [7] and Yarn [19]
introduce an additional scheduling component to share cluster
resources among concurrent frameworks: sharing policies are
based on simple variations of Processor Sharing. Similarly,
cluster management systems such as Docker Swarm [21] and
Kubernetes [20] use a scheduler that assigns resources to
generic frameworks. The problem to solve is the efficient
allocation of resources by placing framework components and
their tasks on cluster machines that satisfy a set of constraints.

We are now ready to define analytics applications, which
are the elements we schedule in our work. Our main objective
is to raise the level of abstraction by manipulating an abstract
entity encompassing one or more analytics frameworks, their
components and the necessary logic for them to cooperate
toward producing useful work by running user-defined jobs.
What sets apart our work from the state of the art is that
our scheduler takes into account the notion of component
classes, which allows modeling the specificity of each frame-
work. We have found two distinct component classes to
be sufficient to model existing analytic frameworks: thus,
framework components either belong to a core or to an elastic
class. Core components are compulsory for a framework to
produce useful work; elastic components, instead, optionally
contribute to a job, e.g. by decreasing its runtime. Consider,
for example, Spark. To produce work, it needs some core
components: a controller (the spark client running the DAG
scheduler), a master (in a standalone deployment), and one
worker (running executors). We treat additional workers as
elastic components. An alternative example is an application
using TensorFlow, which only works with core components:
one or more parameter servers and a number of workers. These
two frameworks have substantially different runtime behavior:
Spark is an elastic framework that can dynamically integrate
workers to dispatch tasks. TensorFlow is rigid, and uses only
core components to make progress.

To summarize, an application raises the level of abstraction
by considering a collection of frameworks and their heteroge-
neous components as a single abstract entity to schedule and
allocate in a cluster of computers.

B. Problem Statement

We now treat the applications defined above as abstract
entities that we call requests: they include one or more
components, which belong to a given class, either core or
elastic. In the literature, the classical problem of scheduling
generic requests to be served by a distributed system has
been extensively studied [28]–[30]. Requests composed solely
by core components are usually referred to as rigid, while
requests composed solely by elastic components are referred
to as moldable (if the assigned resources are decided when
the request is served and they do not change for the whole
execution) or malleable (if the resources can vary during the
execution – e.g., in Spark, workers can be added or removed
without harming application execution). A key difference with
respect to previous work is that we consider heterogeneous
requests, composed by both core and elastic components.

For simplicity of exposition, we assume that system re-
sources can be measured in units, and that there are R available
units overall to satisfy the requests. Each request i specifies
the amount of units for its core and elastic components,
labeled Ci and Ei respectively. Ideally, with enough available
resources, a request is allocated all of its components: in this
case, we define the service (or execution) time as Ti. The
amount of work to satisfy a request is the area of the square
Wi = Ti × (Ci + Ei). More generally, a request is allocated
at least Ci + xi(t) resources, where 0 ≤ xi(t) ≤ Ei. Then,
the service time is T ′i = Wi

Ci+xi(t)
. This simple model allows

updating the service time T ′i when a scheduling decision
modifies xi(t), by measuring the amount of work accom-
plished so far, and by computing the remaining amount of
work to be done. While more complex models to describe T ′i
can be conceived, for example taking into account the multi-
dimensional nature of system resources or different scalability
models, our simple approximation doesn’t affect the nature of
the scheduling problem we are studying. Note also that it is
users’ responsibility to specify a sensible number of elastic
components for their applications.

Essentially, the problem of scheduling the execution of
an incoming workload of requests amounts to: i) sorting
requests to decide in which order to serve them; ii) allocating
distributed resources to requests selected for service. The
sorting phase can be solved using naive approaches, e.g. FIFO
ordering, or more sophisticated policies, that use request size
information. Even more generally, requests can be placed into
“pools” and be assigned priorities, to mimic the hierarchical
organization of the users, for example. The allocation phase
is more tricky: in the abstract, it is a “packing” problem
that has to decide how to shape requests being served. Even
assuming service times to be known a-priori (e.g., Ti is given
as an input), it is well known that the on-line scheduling
problem is NP-hard [28]. Therefore, we need to find a suit-
able heuristic to approximate a solution to the scheduling
optimization problem. In our case, it amounts to minimizing
the application turnaround times, which is the interval of
time between request i submission and its completion. In
the context we consider, optimizing the average turnaround
time represents a meaningful performance metric, as it caters
system responsiveness.

Our scheduling heuristic does not directly take care of data
locality constraints. As shown in [31], cloud providers tend
to disaggregate compute and storage layers: compute and data
nodes can reside on the same host, on different hosts or on
different data centers. Next, we motivate our problem with an
illustrative example.
Illustrative example. We consider a system with 10 available
resource units, and four requests waiting to be served, as
shown in Figure 1. Each request needs 3 units for the core
components, and different units for the elastic components.
For each request, Ti = 10. We focus on the allocation phase
only and we use the FIFO policy to sort the pending requests.

Given these requests, a traditional, rigid approach to
scheduling – which does not make the distinction between

(s)

10

resources

15

5

10

5

10

5

resources

10

28.4323.57

C = 3

E = 4

T = 10

C = 3

E = 3

T = 10

C = 3

E = 5

T = 10

C = 3

E = 2

T = 10

30 40

time
(s)

10 20

40

time
(s)

10

resources

15 22.5 32.5

40

time

approach

DB

A B C D

A C D

B

A C

B D

approach

Malleable

approach

C

Our flexible

A

Baseline, rigid

Fig. 1. Illustrative examples of request scheduling: (top) rigid, (middle)
malleable, (bottom) flexible approaches.

component classes – assigns all required resources to each
request. Since all requests need at least 5 units (Ci+Ei ≥ 5),
and since any pair of requests have an aggregated need that
exceeds 10 units, the scheduler serves one request at a time
(Figure 1, top): the average turnaround time is 25s. Note that,
in this case, backfilling is not possible, i.e., by changing the
request serving order, the situation does not change.

Another scheduling approach comes from the literature
of malleable job scheduling. The scheduler assigns all the
resources to the first request in the waiting line, then assigns
the remaining resources (if any) to the next request, and so
on, until no more free resources are available. This heuristic
has been shown to be close to optimal [29]. Figure 1, middle,
illustrates the idea: request B can be served along with request
A. When request A has completed, the scheduler first assigns
more resources to request B, and then tries to serve the
next request. Similarly, when request B has completed, the
scheduler first assigns more resources to request C, then
attempts at serving request D. However, since request D needs
at least Ci = 3 units, the scheduler is blocked (note that
request C uses 8 units), so request D needs to wait, and some
system resources remain unused. The average turnaround time
is 20s.

In this work we advocate the need for a new approach
to scheduling, which distinguishes component classes. The
idea is to exploit the flexibility of elastic components and use
system resources more efficiently. Intuitively, a solution to the
problems of existing heuristics is to reclaim some resources
assigned to elastic components of a running request and assign
them to a pending request. This is shown in the bottom of

Figure 1: the scheduler reclaims just one unit from request C
so that it can provide 3 units to request D, which are sufficient
for starting its core components and produce useful work. With
this approach, the average turnaround is 19.25s.

While the above solution seems simple, it poses many
challenges: how many units assigned to elastic components can
be sacrificed for serving the next request? How many requests
should be served concurrently? Should the scheduler focus
on core components alone, to make sure many requests are
served concurrently? How can scheduling take into account
the priorities assigned by the sorting phase?

The last point introduces an additional challenge, related
to preemptive scheduling policies. If a high priority request
arrives, since it is not possible to interrupt core components –
for this would kill the request – how can we select and preempt
elastic components to accommodate the new request?

Given heterogeneous, composite requests, which are neither
rigid, nor malleable (but both), available scheduling heuristics
in the literature fall short in addressing the sorting and
allocation problems: a new approach is thus truly desirable.

III. A FLEXIBLE SCHEDULING ALGORITHM

A. Design guidelines

We characterize a request by its arrival time, its priority (to
decide the order in which the requests should be served), the
resources it asks for (core and elastic) and the execution time
(in isolation, i.e., when all required resources are granted to
the application). Given an incoming workload, our goal is to
optimize the sum of the turnaround times τi, that is:

min
∑
i

τi ⇒ min
∑
i

(queuingi + executioni)

The actual execution time depends on the amount of resources
assigned over time to the request. Now, recall that the schedul-
ing problem can be broken into sorting and allocation phases.
Sorting determines when a request is served, thus it has an
impact on its queuing time. The allocation phase contributes
both to queuing and actual execution times. Depending on
allocation granularity [8], a request might need to wait for a
number of resources to be available before occupying them,
thus increasing – albeit indirectly – the queuing time. The
execution time is directly related to the allocation algorithm
and to the workload characteristics.

In this work we decouple request sorting from allocation:1

our scheduler maintains the request ordering, as imposed by an
external component, and only focuses on resource allocation.
Sorting can be simply based on arrival times (which amounts
to implement a FIFO queuing discipline), or can use additional
information, such as request size (thus implementing a variety
of size-based disciplines).

Overall, we optimize request turnaround times through care-
ful resource allocation, and design an algorithm that strives
at allocating all available cluster resources, by serving the

1This approach is similar to the one used in the SLURM scheduler [32],
where the order of the pending jobs is given by an external, pluggable,
component, and the scheduler processes the jobs following that order.

least number of requests at a time. Intuitively, by “focusing”
resources to few requests, we expect their execution times to
be small. Consequently, queued requests also enjoy smaller
wait times, because resources are freed more quickly.

B. Algorithm Details

Although we support preemptive scheduling policies, to
simplify exposition, we first consider the case with no preemp-
tion: resources assigned to a request can only increase, and a
new request can be placed, at most, at the head of the waiting
line, depending on the sorting component. We stress that the
output of our scheduling algorithm is a virtual assignment,
i.e., the mechanism to physically allocate resources according
to the computed assignment (core and elastic components for
running applications) is separate from the scheduling logic,
and considered as an implementation detail.

Our resource allocation procedure is called REBALANCE,
and it is triggered by two events: request arrivals and depar-
tures – see Algorithm 1, ignoring highlighted lines. When a
new request arrives (procedure ONREQUESTARRIVAL), the
resource assignment is done only if such a request is placed
at the head of the waiting line and there are unused resources
that are sufficient for running its core components. When a
request is completed (procedure ONREQUESTDEPARTURE),
the released resources are always reassigned.

The scheduler maintains two ordered sets: the requests
waiting to be served (L), and the requests in service (S).
Each request req needs req.C core components and req.E
elastic components; depending on the allocation, request req
is granted 0 ≤ req.G ≤ req.E elastic components. The core of
the procedure REBALANCE (lines 27-30) operates as follows:
each request req in the serving set S has always at least
req.C resources assigned. Excess resources are assigned to
the requests in S following the request order. The scheduler
assigns as many elastic components as possible to the first
request, then to the second, and so on, in cascade.

Following the design guidelines, the set S should only
contain the requests that are strictly necessary to use all the
available resources. This is accomplished by the first part of
the procedure REBALANCE (lines 17-22): a request is added
to S if the current requests in S are not able to saturate the
total resources (total, line 17). Note that we add a request to
S only if there is room to allocate all of its core components.

C. Preemptive policies

We now consider preemptive policies: request arrivals can
trigger (partial) preemption of running requests, e.g. if new
requests have higher priority than that of the last request in
service. In this case, the tuple describing a request also stores
its priority, req.P . It is important to note that, in this work, the
preemption mechanism only operates on elastic components of
running applications, whereas core components (that are vital
for an application) cannot be preempted.

The highlighted lines in Algorithm 1 show the modifications
to the procedures ONREQUESTARRIVAL and ONREQUEST-
DEPARTURE to support preemption. When a new request

Algorithm 1: Resource assignment procedures
1 procedure ONREQUESTARRIVAL(req)
2 if req.P > S.tail.P then
3 if req.C ≤

∑
j∈S

reqj .E then

4 INSERT(req, S)
5 REBALANCE()
6 else
7 INSERT(req, W)
8 else
9 INSERT(req, L)

10 if req == L.head and req.C ≤ avail then
11 REBALANCE()

12 procedure ONREQUESTDEPARTURE()
13 while W.head.C +

∑
j∈S

reqj .C < total and (W not ∅) do

14 INSERT(POP(W), S)
15 REBALANCE()

16 procedure REBALANCE()
17 while

∑
j∈S

(reqj .C + reqj .E) < total and (L not ∅) do

18 req ← L.head
19 if req.C +

∑
j∈S

reqj .C < total then

20 INSERT(POP(L), S)
21 else
22 break

23 avail← total −
∑
j∈S

reqj .C

24 forall req ∈ S do
25 req.G← 0

26 req ← S.head
27 while avail > 0 and (req not NULL) do
28 req.G← min(req.E, avail)
29 avail← (avail − req.G)
30 req ← req.next

arrives, if its priority is higher than the requests in service,
we check if its core components can be allocated using the
resources occupied by the elastic components of currently
running requests. If so, we insert the request into the set
S and call REBALANCE. Otherwise, we insert the request
into an auxiliary waiting line W , which is given priority
when resources become available. Indeed, procedure ONRE-
QUESTDEPARTURE indicates that we first consider the waiting
requests in W , and we add to the set S as many of them
as possible, considering solely the core components. In other
words, requests in W have higher priority than those in
L. Finally, the call of REBALANCE assigns the remaining
resources to the elastic components of high priority requests.

IV. NUMERICAL EVALUATION

A. Methodology

We evaluate our algorithm using an event-based, trace-
driven discrete simulator developed to study the scheduler

Omega [8], which we extended2 in order to make it work with
applications, instead of low-level jobs and to use the concept
of component classes. Our scheduler implementation supports
a variety of policies – e.g., we support size-based disciplines
in the family of SMART policies [33], where we assume
application size information to be known a-priori: we present
results for the FIFO and the shortest job first (SJF) policies,
which further optimizes system responsiveness. Our imple-
mentation first obtains a “virtual assignment” with Algorithm
1, then fulfills it by allocating resources accordingly, which
happens instantaneously. Additionally, we have implemented
a baseline solution, consisting of a rigid scheduler that does
not distinguish component classes, which is representative of
current cluster management systems. In our simulations, we
consider two-dimensional resources, including definitions of
CPU and RAM requirements. We would like to stress that
the “virtual assignment” can take into consideration other
constraints as well (e.g., GPU).

Our scheduler currently accepts application workloads of
two kinds. The first is batch applications, that take from a
few seconds to a few days to complete: these are delay-tolerant
applications, with a very simple life-cycle. Core components
must first start to produce useful work, by executing user-
defined jobs that are “passed” to the application; eventually,
elastic components can contribute to the application progress.
Once the user programs are concluded, the application finishes,
releasing resources occupied by its frameworks and compo-
nents. The second is interactive applications, which involve a
“human in the loop”: these are latency-sensitive applications,
with a life-cycle triggered by human activity. In this case,
core components must start as soon as possible, to allow user
interaction with the application (e.g., a Notebook).

For our performance evaluation, we use publicly available
traces [22], [23], [34], [35], and generate a workload by
sampling the empirical distributions we compute from such
traces. First, we focus on batch applications alone, and sim-
ulate both rigid (e.g. TensorFlow) and elastic (e.g. Spark)
variants: the label B-R represents rigid applications with only
core components; the label B-E stands for elastic applications,
with both core and elastic components. Then, we evaluate the
benefit of preemption by complementing the above workload
with (simulated) interactive applications. Batch applications
are assigned a number ranging from a few to tens of thousands
of components. Instead, interactive applications are smaller,
and use up to hundreds of elastic components. The resource
requirements of application components follow that of the
input traces, ranging from few MB to a few dozens GB of
memory, and up to 6 cores. Application runtime is generated
according to the input traces, and range from a few dozen
seconds to several weeks (of simulated time). Application
inter-arrival times are drawn from the empirical distributions of
the input traces, and exhibit a bi-modal distribution with fast-
paced bursts, as well as longer intervals between application
submissions. In summary, our workload consists of 80,000

2https://github.com/DistributedSystemsGroup/cluster-scheduler-simulator

F
if
o-

B
-R

S
J
F
-B

-R

F
if
o-

B
-E

S
J
F
-B

-E

104

105

106

107
T

im
e

(s
)

Application Turnaround

F
if
o-

B
-R

S
J
F
-B

-R

F
if
o-

B
-E

S
J
F
-B

-E

0
100

101

102

103

104

105

106

107

T
im

e
(s

)

Application Queue

F
if
o-

B
-E

S
J
F
-B

-E

1.2

1.3

1.4

1.5

1.6

1.7

R
at

io

Application Slowdown

Fig. 2. Comparison of turnaround and queue time distributions, and application slowdown distributions for FIFO and SJF policies. White boxes (right box of
every pair) corresponds to our flexible scheduler, gray boxes correspond to the baseline. B-E stands for batch elastic and B-R stands for batch rigid applications.

Fifo SJF
101

102

103

104

A
p
p
li
ca

ti
on

s
in

 q
u
eu

e

Pending Queue

Fifo SJF
20

40

60

80

100

120

140

160

180

A
p
p
li
ca

ti
on

s
ru

n
n
in

g

Running Applications

Fig. 3. Comparison of queues size for FIFO and SJF between our flexible
scheduler and the baseline. The white boxes (right box of every group)
correspond to our flexible algorithm, gray boxes to the baseline.

applications, with 80% batch and 20% interactive applications.
Batch applications include 80% elastic and 20% rigid variants.

We simulate a cluster consisting of 100 machines, each
with 32 cores and 128GB of memory. All results shown3 here
include 10 simulation runs, for a total of roughly 3 months of
simulation time for each run.

Finally, the metrics we use to analyze the results include:
application turnaround, which allow to reason about the
scheduling objective function, and queuing time, which is
an important factor contributing to the turnaround time. Ad-
ditionally, we measure the queue sizes that hold pending and
running applications, and resource allocation, measured as
the percentage of CPU and memory the scheduler allocates to
each application.

B. Comparison with the baseline

We now perform a comparative analysis between our flexi-
ble scheduler and the baseline (see Section II-B), and start by
disabling preemption: we omit interactive applications from
the workload. Figure 2 (left) illustrates the most important
percentiles (in a box-plot) of the distribution of turnaround
times, where we compare two policies (namely, FIFO and SJF)

3Note that we only report a small selection of all our experimental results:
a comprehensive evaluation of several scheduling policies, along with a study
on appropriate definitions of “application size” is available as a technical
report [36]. In the report, we also provide more details on our workload.

Fifo SJF
0.0

0.2

0.4

0.6

0.8

1.0

%
 C

P
U

Cluster CPU allocation

Fifo SJF
0.0

0.2

0.4

0.6

0.8

1.0

%
 m

em
or

y

Cluster Memory allocation

Fig. 4. Comparison of resource allocation distributions for FIFO and SJF
policies, between our flexible scheduler and the baseline. White boxes (right
box of every pair) correspond to our approach, dashed boxes to the baseline.

used by both the baseline and our scheduler. The benefits of
our approach are noticeable, irrespectively of the scheduling
discipline: the median turnaround is halved when compared
to the baseline, indicating superior system responsiveness.
Additionally, we observe the benefits of a size-based policy in
further decreasing turnaround times. We note that our approach
is beneficial for both rigid and elastic batch applications:
Figure 2 (center) shows a box-plot of application queuing
times, which contribute to their turnaround. With our approach,
both kinds of applications spend less time waiting in a
queue to be served. By differentiating classes of components,
applications can execute as soon as enough resources to
produce work are available. Finally, Figure 2 (right) focuses
on application runtime: we report the slowdown computed as
the ratio between the nominal application runtime (i.e., the
time required for an application to complete in an empty sys-
tem, with all application components allocated their requested
resources) and the effective application runtime obtained with
the simulation. Values above one indicate that applications run
slower in a system absorbing a given workload when compared
to applications running in an empty system. Overall, these
results show that our scheduling approach does not impose a
high toll on application runtime, while globally contributing
to improved turnaround times.

Next, we support the general results discussed above with

additional details. Figure 3 shows the box-plots of the distri-
bution of queue sizes, for both the pending and the running
queues. Our approach induces a smaller number of applica-
tions waiting to be served, as well as a larger number of
applications running in the system, compared to the baseline
and across different policies. Indeed, our flexible scheduler
achieves a better packing of applications, which means they
can start sooner. Additionally, the benefits of a size-based
discipline are clear: the number of applications waiting is
almost one order of magnitude smaller compared to a FIFO
policy, while the number of running applications is similar.

Finally, Figure 4 shows metrics from the cluster perspec-
tive: our approach (for both disciplines) induces a far better
resource allocation compared to the baseline, achieving more
than 20% gains in both CPU and RAM allocation.4

C. Preemption

We turn now our attention to the full workload we defined
in Section IV-A, including interactive applications. Preemption
is used when a high-priority, interactive application requires
resources: this applies both to manually set priorities (e.g., in
a FIFO policy) and to size-based priorities. In particular, we
report results for the preemptive version of the SJF policy.

Figure 5 shows the most relevant percentiles of the distri-
bution of application queuing times, grouped by application
type (both cases of batch and interactive applications), with
and without our preemption mechanism. Globally, preemption
does not subvert the perceived system responsiveness. How-
ever, interactive applications under preemptive scheduling en-
joy roughly two orders of magnitude less queuing times. Users
do not wait for few dozens minutes but only few seconds, for
their interactive application to start. As a consequence, elastic
batch applications pay with more variability (but stable for the
median case) in queuing times.

Since our simulator does not account for real work done
by applications, the preemption mechanism does not have
any effect on the work that has been done by preempted
components. In practice, our current preemption mechanism
would instead suppress work done by elastic services, if
preempted. Studying new preemption primitives, e.g. by sus-
pending Linux containers, is part of our research agenda: this
is the main reason why our current prototype implementation
lacks support for preemption.

V. IMPLEMENTATION: THE ZOE SYSTEM

Next, we describe Zoe5, the system we have built to
materialize the concepts developed earlier.

Zoe allows defining analytics applications and schedule
them in a cluster of machines. It is designed to run on top of an
existing low-level cluster management system, which is used
as a back-end to provision resources to applications. Raising

4Allocation is different from utilization: the simulator does not account for
real application execution, so we cannot report utilization figures.

5Zoe, https://zoe-analytics.eu/, was conceived in August 2015, named after
the biggest container boat in the world, which, has touched sea [37] in the
same period of time. In this work, we omit several implementation details
that stem from our continuous effort to extend Zoe.

B-R B-E Int
0

100

101

102

103

104

105

T
im

e
(s

)

Application Queue

B-R B-E Int
0.9

1.0

1.1

1.2

1.3

1.4

1.5

W
it

h
ou

t/
W

it
h
 p

re
em

p
ti

on

Turnaround Ratio

Fig. 5. On the left, comparison of queuing time distributions between
scheduling with and without preemption. White boxes (left box of every
pair) correspond to a non-preemptive system, gray boxes to our preemptive
algorithm. On the right, turnaround ratio distributions between scheduling
with and without preemption. B-E stands for batch elastic applications, B-R
stands for batch rigid applications and Int is for interactive applications.

the level of abstraction to manipulate analytics application is
beneficial for users and ultimately to the system design itself:
application scheduling decisions can be taken with a small
amount of state information, and do not happen at the same
(extremely fast) pace as low-level task scheduling. Next we
overview Zoe’s design, and provide relevant details for the
subject of this work.
Zoe applications. In Zoe, the concepts introduced in Section II
take the form of simple JSON description files that follow a
high-level configuration language (CL) to specify applications,
frameworks and components with their classes (core or elas-
tic), resource reservations and constraints. The CL is simple
and extensible: it aims at conciseness and, with framework
templates, can be used by “casual” and “power” users [9].

The key aspect that determines the application type (batch,
interactive, or any new type) is the way application life-cycle
is managed. This is determined by a flexible attribute, reminis-
cent of a “command line”, which allows passing runtime con-
figuration options, user-defined arguments and environment
variables, as well as setup and cleanup procedures. For appli-
cation design, the “command line” attribute requires minimal
knowledge of the frameworks that constitute an application.
As an example of the simplicity and effectiveness of the Zoe
CL, building a batch application for the distributed version of
TensorFlow [25] only requires tens of lines of CL. The most
important attribute is the “command line”, which is required
to run a TensorFlow program, i.e., python $TF_PROGRAM
$PS_HOSTS $WK_HOSTS program-args. Environment
variables are appropriately handled by Zoe, including infor-
mation unknown at scheduling time (e.g., host names).

A note on application failures is required. Any failure of
an elastic component is practically harmless, whereas core
component failures imply application failure. An area of future
work is to exploit failure tolerance mechanisms available from
some back-ends (e.g., Kubernetes) to steer application-level
failure tolerance modes.
Zoe back-ends. The main design idea of our system is to
hide the complexities of low-level resource provisioning from
application scheduling and exploit an existing cluster man-
agement system, for which many alternatives exists. Currently,

Zoe builds on top of Docker Swarm [21], and uses it to achieve
a series of objectives we list below:
• Orchestration: Zoe interacts with all the machines in

a cluster using the Docker orchestration API (known
as Swarm [21]), which governs the behavior of the
Docker engine [38] deployed in each machine. Thus, Zoe
manages to distribute the necessary binaries for the com-
ponents of an application that is scheduled for execution,
their configuration, life-cycle, and provisioning.

• Dependency management: Zoe applications materialize as
a series of Docker images, which contain all dependencies
and external libraries required for an application to run.
Zoe applications can be built from community-provided
or custom Docker images of existing frameworks.

• Resource isolation: framework components specified in
an application run in Linux containers, which are man-
aged by a Docker engine. We also use the Docker engine
to achieve memory allocation, whereas CPU partitioning
is left to the machine OS. This means, we have a one
dimensional packing problem.

• Resource matching: application descriptions include re-
source constraints. When an application is scheduled
for execution, Zoe instructs the back-end to adhere to
component constraints when provisioning the relevant
Docker images with framework binaries, as determined
by the virtual assignment obtained by Algorithm 1.

• Naming and networking: the services for application
components to cooperate in producing useful work, and to
interact with the outside world are an important aspect to
consider when choosing an appropriate back-end for Zoe.
We use Docker networking, but we also have developed
our own service discovery mechanism to allow a more
flexible application configuration and deployment.

Zoe architecture. Although Zoe is separated in several mod-
ules, it does not require any cluster-wide installation, because
it uses its back-end to interact with the cluster.

The Zoe master polls a high-fidelity view of the cluster
state through its back-end, whenever the scheduler is triggered,
and stores it into a state store, backed by a PostgreSQL
database. The state store also holds applications state, which
is modeled as a simple state-machine. Because Zoe handles
high-level objects (applications), the strain on the system is
minimal: the rate of scheduling decisions scales well even with
heavy workloads. The virtual assignment procedure avoids
application interference by construction because it considers
requests in sequence, according to their priority. The virtual
assignment is imposed on the back-end, using its API.

The Zoe client API handles REST calls that mutate the
system state, or that can be used to monitor the system
behavior. Command-line and web interfaces allow users and
administrators to interact with the system and the cluster.

The Zoe scheduler implements the algorithm described
in Section III. When an application is submitted, the Zoe
master creates an entry in the application state store, and adds
it to a pending queue. Our system allows plugging several
scheduling policies to manage the pending queue, ranging

B-E B-R
0

1000

2000

3000

4000

5000

6000

7000

T
im

e
(s

)

Application Turnaround

Base ZOE
50

60

70

80

90

100

P
er

ce
n
ta

ge
 (

%
)

Memory Allocated

Fig. 6. Comparison of turnaround time distributions using the FIFO discipline.
White boxes (right box of every pair) correspond to the second generation
of Zoe that implements our algorithm. B-E stands for batch elastic and B-R
stands for batch rigid applications.

from simple to sophisticated size-based policies. Such policies
determine which application is granted “access” to cluster
resources: to this end, the scheduler uses the cluster state
store to simulate possible deployments before accepting an
application. Framework components underlying an application
are scheduled according to their type. The scheduler strives at
making sure the application selected for execution can make
progress as soon as resources are allocated to it. The Zoe
monitoring module uses the Docker event stream to update the
state of each application component running in the system.

Currently, the Zoe system supports a naive preemption
mechanism: entire applications can be killed upon a command.
The finer strategy described in Section III and Section IV is
currently under development.

Finally, although Zoe supports many data sources and sinks,
we report experiments using a HDFS cluster to store input
data to applications, and CEPH volumes to store application-
specific logs.

VI. EXPERIMENTS WITH ZOE

Our goal now is to perform a comparative analysis of two
generations of Zoe: the first, implementing a rigid scheduler,
as for the baseline, the second with the flexible scheduler we
present here. In our experiments, we replay the exact same
workload trace for both generations. Each trace takes about
3 hours from the first submission to the last one. During our
experiments, no other user was allowed to submit jobs to Zoe.
Workload. We use two representative6 batch application
templates, including: 1) an elastic application using the Spark
framework; 2) a rigid application using the TensorFlow frame-
work. Following the statistical distribution of our historical
traces, we set our workload to include 80% of elastic and
20% of rigid applications, for a total of 100 applications.
Application inter-arrival times follow a Gaussian distribution
with parameters µ = 60 sec, and σ = 40 sec, which is
compatible with our historical data. More specifically, using
the elastic application templates, we run two use cases. First,
an application to induce a random-forest regression model to
predict flight delays, using publicly available data from the

6Additional details about our applications and workloads can be found in
[36]. The first generation of Zoe has been in use for more than one year at
Eurecom, offering analytics-as-a-service to our data scientists and students.

US DoT.7 Second, a music recommender system based on
alternating least squares algorithm, using publicly available
data from Last.fm8 Both applications have 3 core components,
the first one also has 32 elastic components of 16GB of
RAM each, the second one has 24 components, 8GB each.
Instead, using the rigid application template, we train a deep
Gaussian Process model [39], and use both a single-node and
a distributed TensorFlow program, requiring 1 and 10 workers
(and 5 parameter servers) each with 16GB of RAM.
Experimental setup. We run our experiment on a platform
with ten servers, each with two 16-core Intel E5-2630 CPU
running at 2.40GHz (total of 32 cores with hyper-threading en-
abled), 128GB of memory, 1Gbps Ethernet network fabric and
ten 1TB hard drives. No GPU-enabled machines are available
in our platform, at the moment. The servers use Ubuntu 14.04,
Docker 1.11 and the standalone Swarm manager. Docker
images for the applications are preloaded on each machine
to prevent container startup delays and network congestion.
Summary of results. Using the FIFO scheduling policy,
we compare the two generations of Zoe according to the
distributions of application turnaround times, as shown in
Figure 6 (left). The behavior of the two systems indicate a
clear advantage for our approach: the median turnaround times
are 37% and 22% lower, for elastic and rigid applications
respectively. Note also that the tails of the distributions are
in favor of our approach.

Overall, the new generation of Zoe that implements the flex-
ible scheduler is more efficient, with a 20% improvement, in
allocating and packing applications, as illustrated in Figure 6
(right), where we show the ratio of the distribution of allocated
over available resources.

Finally, we present results concerning a low-level metric that
measure the application ramp-up time, i.e., the time it takes for
applications scheduled for running, to receive their allocations
and start producing work. Zoe achieves a container startup
time, including placement decisions, of 0.90± 0.25ms. Full-
fledged applications, made by several containers, only take few
seconds to start, which is a compelling property, especially
when compared to existing solutions such as Amazon EMR.

VII. RELATED WORK

We organize related work in three groups: (i) existing, ma-
ture systems (“competitors”), (ii) recent works in the systems
research, and (iii) works on scheduling at the task level.

Many “competitor” systems have been designed to cope
with the problem of sharing cluster resources across a hetero-
geneous set of applications. For example, Yarn [19] and Mesos
[7] have been among the first to enable multiple frameworks
to coexist in the same cluster: these “two-level” schedulers
improve over monolithic approaches to resource scheduling.
Such systems deal with the scheduling of low-level processing
tasks. More general approaches address the problem of cluster-
wide resource management: Omega [8], then Borg [9] (and

7http://stat-computing.org/dataexpo/2009/the-data.html
8http://www-etud.iro.umontreal.ca/∼bergstrj/audioscrobbler data.html

Kubernetes [20]) reason at the “container” level, and are
optimized to achieve efficient placement of cluster resources.
This latter includes a majority of long-running services. Addi-
tionally, container orchestration frameworks, such as Docker
Swarm [21], also provide efficient solutions to the problem of
scheduling containers. Our work relies on many of the above
systems, and can use them as a back-end to support scheduling
of high-level applications rather than provisioning low-level
containers. Existing auxiliary deployment tools such as Aurora
[40] and Docker Compose [41], do not address scheduling
problems.

In the systems research literature, some system designs are
based on ideas that can be “borrowed” to extend our system
prototype and research scope. Koala-f [13] tackles dynamic
resource allocation problems, similar to “idle” interactive
applications. HCloud [12] allow users to express performance
requirements rather than machine-level resource counts. This
can be included in an application description, but it requires
developing additional components, as done for example in
Tarcil [17] and Paragon [14]. By focusing on a higher-level
of abstraction, the focus of our work is to address a rather
abstract scheduling problem: our implementation indicates that
our ideas work in practice and also bring tangible benefits.

Finally, many works address the problem of low-level task
scheduling. Such schedulers are designed to support a specific
“data-flow” programming model, but many of their design
choices can also be used at a higher level. For example, Tyrex
[18] and HFSP [42], [43] are a sample of size-based sched-
ulers. Quincy [15] and DRF [44] study max-min fair, task-level
resource allocation, working on multi-dimensional resources.
Although our prototype currently consider a one-dimensional
packing problem, ideas presented in [44] can be extended to
our work. Recently, schedulers supporting complex directed
acyclic graphs representing low-level, parallel computations
have also appeared: Graphene [45], addresses the problem of
complex dependencies the various stages of the computational
graph. The work in [46] indicates substantial improvements in
terms of resource utilization thanks to worker queues. Bistro
[10] employs a hierarchical model of data and computational
resources, which enable efficient scheduling. Firmament [47]
is a scalable centralized scheduler that uses a min-cost max-
flow optimization approach. Issues related to scheduling scal-
ability have been addressed through a distributed design, such
as in Sparrow [16] and in Condor [11].

VIII. CONCLUSIONS

Efficient resource management of computer clusters has
been a long-lasting area of research, with peaks of attention
happening in conjunction to improvements in computing ma-
chinery, e.g. lately with cloud computing and big data. A new
breed of cluster management systems, aiming at becoming
“data-center operating systems”, are currently been confronted
with problems of efficiency and performance at scale.

Despite recent advances, there exists a gap between the goal
of low-level resource management, and that of manipulating
high-level, heterogeneous, distributed (analytic) applications

running in such cluster environments. In this paper we pre-
sented a first possible step to fill this gap, in the form
of a new application scheduler that interacts with a cluster
management back-end, to schedule and allocate resources to
applications defined with a simple language and semantics.
In addition to careful engineering, required to design and
implement our system we call Zoe, our research identified
a more fundamental problem, that required us to design a
novel scheduling heuristic capable of manipulating composite
applications, while contributing to system responsiveness.

We validated our algorithm to address our scheduling
problem along two lines. We used a numerical approach to
simulate large-scale deployments and workloads. We showed
our scheduling algorithm to be highly effective in reducing
turnaround times, in particular by reducing applications queu-
ing times. Consequently, cluster resources were better allo-
cated. In addition, we reported an overview of the evaluation of
Zoe, that indicates superior performance and efficiency related
to our flexible scheduling heuristic.

Our road-map includes the development of a method to
redeem untapped resources from idle but running applications,
which calls for a substantial rethinking of the resource reser-
vation paradigm; the design and implementation of application
fault tolerance mechanisms; and a long list of pending “tick-
ets” stemming from our open-source Zoe project.

ACKNOWLEDGEMENTS

The research leading to these results has received fund-
ing from the EU commission in call H2020-644182, project
“IOStack”. This work was partially supported by the National
Group for Scientific Computation (GNCS-INDAM).

REFERENCES

[1] J. Dean et al., “Mapreduce: simplified data processing on large clusters,”
Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[2] M. Isard et al., “Dryad: distributed data-parallel programs from se-
quential building blocks,” in ACM SIGOPS Operating Systems Review,
vol. 41, no. 3, 2007, pp. 59–72.

[3] M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing,” in Proc. of the USENIX
NSDI 2012.

[4] D. G. Murray et al., “Naiad: a timely dataflow system,” in Proc. of the
ACM SOSP 2013.

[5] X. Meng et al., “Mllib: Machine learning in apache spark,” JMLR,
vol. 17, no. 34, pp. 1–7, 2016.

[6] M. Abadi et al., “Tensorflow: Large-scale machine learning on hetero-
geneous distributed systems,” arXiv preprint arXiv:1603.04467, 2016.

[7] B. Hindman et al., “Mesos: A platform for fine-grained resource sharing
in the data center,” in Proc. of the USENIX NSDI 2011.

[8] M. Schwarzkopf et al., “Omega: Flexible, scalable schedulers for large
compute clusters,” in Proc. of the ACM EuroSys 2013.

[9] A. Verma et al., “Large-scale cluster management at Google with Borg,”
in Proc. of the EuroSys 2015.

[10] A. Goder et al., “Bistro: Scheduling data-parallel jobs against live
production systems,” in Proc. of the USENIX ATC 2015.

[11] T. Tannenbaum et al., “Beowulf cluster computing with linux,” 2002,
ch. Condor: A Distributed Job Scheduler.

[12] C. Delimitrou et al., “Hcloud: Resource-efficient provisioning in shared
cloud systems,” in Proc. of the ACM ASPLOS 2016.

[13] A. Kuzmanovska et al., “Koala-f: A resource manager for scheduling
frameworks in clusters,” in Proc. of the CCGrid 2016.

[14] C. Delimitrou et al., “Paragon: Qos-aware scheduling for heterogeneous
datacenters,” in Proc. of the ACM ASPLOS 2013.

[15] M. Isard et al., “Quincy: fair scheduling for distributed computing
clusters,” in Proc. of the ACM SOSP 2009.

[16] K. Ousterhout et al., “Sparrow: distributed, low latency scheduling,” in
Proc. of the ACM SOSP 2013.

[17] C. Delimitrou et al., “Tarcil: Reconciling Scheduling Speed and Quality
in Large Shared Clusters,” in Proc. of the ACM SOCC 2015.

[18] B. Ghit et al., “Tyrex: Size-based resource allocation in mapreduce
frameworks,” in Proc. of the CCGrid 2016.

[19] V. K. Vavilapalli et al., “Apache hadoop yarn: Yet another resource
negotiator,” in Proc. of the ACM SoCC 2013.

[20] “Kubernetes,” http://kubernetes.io/.
[21] “Docker Swarm,” https://docs.docker.com/swarm/.
[22] C. Reiss et al., “Heterogeneity and dynamicity of clouds at scale: Google

trace analysis,” in Proc. of the SoCC 2012.
[23] “Google Public Traces,” https://github.com/google/cluster-data.
[24] “Spark,” http://spark.apache.org/.
[25] “TensorFlow,” https://www.tensorflow.org/.
[26] “Open MPI,” https://www.open-mpi.org/.
[27] M. Ragan-Kelley et al., “The jupyter/ipython architecture: a unified view

of computational research, from interactive exploration to communica-
tion and publication.” in AGU Fall Meeting Abstracts 2014, vol. 1.

[28] K. Pruhs et al., “Online scheduling,” Handbook of scheduling: algo-
rithms, models, and performance analysis, pp. 15–1, 2004.

[29] P.-F. Dutot et al., “Scheduling parallel tasks: Approximation algorithms,”
Handbook of scheduling: Algorithms, models, and performance analysis,
pp. 26–1, 2004.

[30] J. Sgall, “Online preemptive scheduling on parallel machines.” 2015.
[31] F. Pace et al., “Experimental performance evaluation of cloud-based

analytics-as-a-service,” in 9th IEEE International Conference on Cloud
Computing, CLOUD, June 2016.

[32] “Slurm workload manager,” https://slurm.schedmd.com/.
[33] A. Wierman et al., “Nearly insensitive bounds on smart scheduling,”

in ACM SIGMETRICS Performance Evaluation Review, vol. 33, no. 1,
2005, pp. 205–216.

[34] J. Wilkes, “More Google cluster data,” Google research blog,
Nov. 2011, posted at http://googleresearch.blogspot.com/2011/11/
more-google-cluster-data.html.

[35] C. Reiss et al., “Google cluster-usage traces: format + schema,” Google
Inc., Technical Report, Nov. 2011.

[36] F. Pace et al., “Flexible scheduling of distributed analytic applications,”
arXiv:1611.09528, 2016.

[37] “MSC Zoe,” https://en.wikipedia.org/wiki/MSC Zoe.
[38] “Docker,” http://www.docker.com/.
[39] K. Cutajar et al., “Practical learning of deep gaussian processes via

random fourier features,” arXiv:1610.04386, 2016.
[40] “Aurora,” http://aurora.apache.org/.
[41] “Docker Compose,” https://docs.docker.com/compose/.
[42] M. Pastorelli et al., “HFSP: size-based scheduling for hadoop,” in Proc.

of the IEEE BigData 2013.
[43] M. Dell’Amico et al., “Revisiting size-based scheduling with estimated

job sizes,” in Proc. of the IEEE MASCOTS 2014.
[44] A. Ghodsi et al., “Dominant resource fairness: Fair allocation of multiple

resource types,” in Proc. of the USENIX NSDI 2011.
[45] R. Grandl et al., “GRAPHENE: packing and dependency-aware schedul-

ing for data-parallel clusters,” in Proc. of the USENIX OSDI 2016.
[46] J. Rasley et al., “Efficient queue management for cluster scheduling,”

in Proc. of the ACM EuroSys 2016.
[47] I. Gog et al., “Firmament: Fast, centralized cluster scheduling at scale,”

in Proc. of the USENIX OSDI 2016.

