
Oblivious RAM as a Substrate for Cloud Storage — The
Leakage Challenge Ahead

Marc Sánchez-Artigas
Universitat Rovira i Virgili
marc.sanchez@urv.cat

ABSTRACT
Oblivious RAM (ORAM) is a well-established technology to
hide data access patterns from an untrusted storage system.
Although research in ORAM has been spurred in the last few
years with the irruption of cloud computing, it is still unclear
whether ORAM is ready for the cloud. As we demonstrate in
this short paper, there are still some important hurdles to be
overcome. One of those is the standard block-based ORAM
interface, which can become a timing side-channel when used
as a substrate to implement higher level abstractions such as
filesystems, personal storage services, etc., typically found in
the cloud. We analyze this form of leakage and discuss some
possible solutions to this problem, concluding that thwarting
it in an efficient manner calls for further research.

Keywords
ORAM; access pattern; leakage; information flow

1. INTRODUCTION
Oblivious RAM (ORAM) is a privacy tool to conceal data

access patterns. Although this concept was proposed decades
ago to hide the accesses made to memory by programs [4], the
interest in ORAM has been much revived with the advent of
cloud computing. Specifically, many cloud services require of
secure online storage to host their sensitive data (healthcare
data, financial reports, etc.). Privacy concerns for those sys-
tems should not only involve protection against data leaks,
which could be realized through encryption, but also against
side channels such as data access patterns. To address this
issue, a bunch of ORAM schemes have been proposed [15, 8,
13, 11], to make this technique more amenable to the cloud.

The problem. Despite the enormous progress made during
the last few years, for instance, to cope with multi-client and
asynchronous scenarios (see TaoStore [10] and the references
thereof), it is still unclear whether ORAM is actually getting
to a practical end. Proof of that is the recent work [2], which

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prof t or commercial advantage and that copies bear this notice and the full cita-
tion on the f rst page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specif c permission
and/or a fee. Request permissions from permissions@acm.org.
CCSW’16, October 28 2016, Vienna, Austria
c© 2016 ACM. ISBN 978-1-4503-4572-9/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2996429.2996430

discusses the existing mismatch between ORAM theory and
the performance requirements of cloud applications.

However, there are other fundamental issues that have also
been overlooked in the literature. One of them is whether the
block-based ORAM interface is indeed suitable for the cloud.
Although the“key-value”-like ORAM interface is analogous to
that provided by cloud storage services (e.g., Windows Azure,
Amazon S3, etc.), it is not readily adequate for many storage
systems like (distributed) file systems, personal storage (e.g.,
Dropbox, UB1, Box, OneDrive, etc.) and document-oriented
databases (e.g., MongoDB, CouchDB, etc.), to cite a few. The
key reason is that this key-value interface is only oblivious at
the block level, but not so at upper levels such as at the file or
document levels. For example, this implies that an access to
a file is turned into several block accesses in a short period of
time, which is seen by the remote storage service as batch of
requests originating from the same source. This very simple
observable feature can leak bits on the private user input and
thus easily break ORAM security.

Contributions. In this paper, we show that this simplistic
form of timing channel can leak extra information through a
practical example, and we elucidate the existence of a trade-
off between performance and information leakage that arises
from the interface mismatch between cloud applications and
ORAM. Finally, we discuss some possible solutions to such a
problem, which call for further research. To our knowledge,
this work is the first that studies the effects of the interface
mismatch between ORAM algorithms and cloud storage.

2. PRELIMINARIES
“Oblivious”Storage Interface. From the seminal work by
Goldreich and Ostrovsky [4], the atomic unit of storage and
access in ORAM algorithms has been the block. This has led
to the definition of a simple block-based interface that allows
an ORAM client to read and write to block addresses [N].
This block interface is said to be oblivious, i.e., the untrusted
storage server cannot learn the plaintext of user content, the
requested addresses, nor the relationships between requested
addresses. Technically, this interface offers two primitives: 1)
(read, vi, data), to read a block data with unique address vi
from a storage repository, and 2) (write, vi, data), to write a
block data with unique address vi to the remote server. This
basic interface, originated from memory protection, does not
consider all types of modern cloud storage such as object and
file storage, becoming a source of privacy leakage.

Security Model. As commonly agreed, we consider that
the remote server is “honest but curious”, that is, it behaves

49

http://dx.doi.org/10.1145/2996429.2996430

correctly in following the protocol, but it attempts to gain as
much knowledge as possible by direct observation of the data
access pattern. The network connection between the clients
and the server is assumed to be secure, e.g.,through SSL.
However, we assume that the communication between the

client and the server is asynchronous, just because the client
can issue multiple block requests at any time, to fetch all the
blocks that belong to a file or object. And thus, it is easy for
the server to learn when requests are related to one another,
information that can also be visible by a potential intruder in
the datacenter. Notice that we implicitly assume that block
requests are never intentionally delayed by the client in order
to not slow down the application needing these accesses. The
rest of the security definition is the standard one, which can
be found elsewhere (see Path ORAM [15], for instance).

Path ORAM. Path ORAM [15] is a tree-based ORAM. It
organizes the server storage as a tree where each node (a.k.a.
bucket) holds a few blocks. To fulfill a request for address v,
the ORAM client looks up a position map that links block v
to a random tree leaf. From the leaf, all blocks on the path
to the root are retrieved to find the block with address v. An
eviction procedure on the read path is then ran to insert all
the read blocks (temporarily stored in a client stash) back to
the tree, and as close as possible to the leaf.

Path ORAM requires negligible computation. However, it
can incur substantial bandwidth overhead. LetW denote the
bandwidth cost of an ORAM scheme defined as the number

of blocks transferred per block of useful data. In practice, the
bandwidth cost W of Path ORAM is of O(logN). For each
read and write operation, the client reads a path of Z logN
blocks from the server, writing them back. This amounts to
a total of 2Z logN blocks bandwidth per request, where Z is
the bucket size in blocks. For complete details, see [15].

3. METRICS, STORAGE SIDE-CHANNELS
Bandwidth Efficiency. Although the bandwidth cost is a
useful metric to compare an ORAM algorithm to a baseline,
it can be misleading for investigating the efficiency of ORAM
in cloud storage systems. The major reason is that the block
size is chosen offline in presumably all known schemes, that
is, before any piece of data is stored in the system, and thus,
it is subject to internal fragmentation: some space is wasted
within each valid block because of the rounding-up from the
actual requested file size to the allocation granularity.
Since network-level efficiency is central for cloud providers,

we propose a new metric to quantify the efficiency of ORAM
named Bandwidth Efficiency (BE). It is defined as:

BE =
Total data to access a set of files

Total size of files
.

More formally, given a set ofM files F = {f1, f2, . . . , fM}, let
s(fi) be the file size of file fi in bits. Let P(fi) be the access

probability of file i (we assume
∑M

i=1 P(fi) = 1). Then,

BE =
W

(

∑M

i=1 ⌈s(fi)/D⌉P(fi)
)

∑M

i=1 s(fi)P(fi)
, (1)

whereW is the bandwidth cost incurred by an ORAM access
in blocks andD is the size of the ORAM blocks in bits. Since
our metric accounts for the retrieval of useful information, it
better captures the real efficiency of ORAM in cloud storage

systems. In particular, for Path ORAM, we have that

BE =
2Z ⌈log2(N)⌉

(

∑M

i=1 ⌈s(fi)/D⌉P(fi)
)

∑M

i=1 s(fi)P(fi)
,

whereN is the total number of blocks required to store theM
files and is given by

∑M

i=1 ⌈s(fi)/D⌉.

Privacy Leakage. A limitation in current ORAM schemes
is that they operate at the block level. And hence, they may
leak bits of information about the secret input when accesses
occur at a higher granularity (file). To measure this form of
leakage, we will use the min-entropy metric proposed in [12].
The reason is that classical metrics like the Shannon entropy
yield bounds for the expected effort for recovering secrets by
brute-force search. However, as illustrated in [12], even if the
average effort can be proven to be significant, the probability
of guessing the secret with a small number of guesses can be
high. This better matches the reality of cloud storage, and it
is expected strong security guarantees.

Concretely, we consider an implementation of a storage
application that manages data at the file level. Built on top
of ORAM, every file access in this application translates into
a batch of random block accesses. Because the block size D
is of fixed size (typically, of at least Ω(logN) bits), the batch
size can be captured by a function g : F → B such that g(f)
returns the number of blocks to be fetched to read and store
a file f . Here F is the finite set of files of a user, a file system
or a file store, and B denotes the set of possible batch sizes in
number of blocks.

Clearly, such a deterministic model induces an equivalence
relation ∼ on F : Two files f and f ′ are equivalent f ∼ f ′, iff
g(f) = g(f ′). For clarity, let Fb denote the equivalence class
f−1(b): Fb = {f ∈ F | g(f) = b}. The importance of the
equivalence classes is that they bound the knowledge of the
server S: If S sees a batch of size b blocks, then it knows that
f belongs to class Fb, and this can tell S some information
about the access pattern.

To put it in more formal terms, let F denote the random
variable that describes the next file to be accessed. Similarly,
say that random variable B outputs the batch size. We then
quantify the amount of information flowing from F to B by
assuming that a server S that wishes to guess the requested
file F . It is natural then to measure bit leakage by comparing
the uncertainty of S about F before and after observing B:

leakage = initial uncertainty − remaining uncertainty.

The meaning of “uncertainty” here is the vulnerability of F
to being guessed correctly in one shot by S, and is given by
V (F) = maxf∈F PF (f). In a similar way, we can define the
a posteriori vulnerability V (F | B) as [12]:

V (F | B) =
∑

b∈B

PB(b)V (F | b) =
∑

b∈B

max
f∈F

P (b | f)PF (f) .

Since the mapping between files and batches is deterministic,
we have that F is split into |B| equivalence classes Fb. Then,
V (F | B) =

∑

b∈B
maxf∈Fb

PF (f).
It is trivial to convert from vulnerability to uncertainty by

taking the negative logarithm, giving Rényi min-entropy [9].
Therefore, H∞(F) = − log V (F) (initial uncertainty), and
H∞(F | B) = − log V (F | B) (remaining uncertainty). The
min-entropy leakage from F to B, denoted by LFB , can be
finally defined as: LFB = H∞(F)−H∞(F | B), which is

50

LFB = log

(
∑

b∈B
maxf∈Fb

PF (f)

maxf∈F PF (f)

)

. (2)

As can be easily inferred from (2), min-entropy leakage is
therefore strongly dependent on the a priori distribution PF .
And actually, when PF is the uniform distribution, i.e., each
file is accessed with equal probability 1/|F|, it is trivial to see
that min-entropy leakage is maximal and equal to log |B| bits
(the notion of channel capacity in information theory):

Lemma 1. The maximal min-entropy leakage is log |B|,
and it is realized by a uniform distribution on F .

Proof. Using (2), we have that

LFB ≤ log

(

|B|maxf∈F PF (f)

maxf∈F PF (f)

)

= log |B|.

The above upper bound is reached if and only if the following
condition holds: For all b ∈ B, there exists f∗ ∈ Fb such that
PF (f∗) = maxf∈F PF (f). This condition is fulfilled when F
is uniformly distributed. But it is also valid for non-uniform
distributions, as long as every equivalence class Fb includes
the maximum of the distribution.

From an information theory viewpoint, Lemma 1 shows that
a larger set of potential batch sizes B to observe will result in
a greater amount of data leakage. In the next section, we will
show to what extent the batch size can leak bits about the
private files using a real trace from a cloud storage service.

4. TRADE-OFF ANALYSIS OF THEORAM
INTERFACE

In this section, we analyze how realistic workloads can leak
information on the accessed private files, just because the cloud
server S can observe all the block requests corresponding to
a file. We also discuss potential strategies to reduce leakage
and how it affects performance, unveiling the existence of a
trade-off between efficiency and security.
To better inform this argument, we quantify the leakage of

several real user access patterns from the UbuntuOne (UB1)
personal storage service according to the model developed in
the previous section. UB1 was the personal storage service of
Canonical Ltd. It was integrated by default in Linux Ubuntu
OS, and as a result, it had a user base of over 1 million users
until its shutdown on July 2014. The main positive of UB1 is
that the observed patterns in this service are representative
of those found in many real storage systems. From its recent
measurement [6], we selected four typical access patterns on
personal files1. We named A through D for quick reference
throughout this text: Workload A is read-only with a single
access per file; workload B exhibits a Zipf-like access pattern;
C is read-heavy with a slightly skewed pattern; and D has a
balanced read/write ratio with moderate skew. These traces
capture the real access pattern for 1, 000 files issued by four
distinct users. For the experiments, we will assume a bucket
size of Z = 3 for Path ORAM.

4.1 Leakage vs. Eff ciency
We first study the trade-off between leakage and efficiency

caused by the mismatch in the access granularity of ORAM
and cloud storage applications for personal storage, network

1The traces will be made available after the workshop.

1KiB 10KiB 100KiB 1MiB
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 A

A

A

A

B
B B B

C

C

C C

D

D

D

D

Block size

M
in

−e
nt

ro
py

 le
ak

ag
e

(b
its

)

(a)

1KiB 10KiB 100KiB 1MiB
100

101

102

103

104

A A
A

A

B B

B

B

C

C

C

C

D D

D

D

Block size
B

E

(b)
Figure 1: Min-entropy leakage (a) and Bandwidth Efficiency
(b) as a function of the block size for workloads A to D.

file systems, etc. To do so, we calculate the min-entropy and
BE for each workload and depict the results in Fig. 1. Since
the block size D is a sensitive parameter, we compute both
measures for four different values of D, ranging from 1 KiB
to 1 MiB, each representing an order-of-magnitude increase
in the block length. These values are good representatives of
existing blocks sizes in modern storage systems, from the few
kilobytes of networked file systems like NFS and CephFS up
to personal cloud storage systems with chunks of a few MBs.

The first observation to be made is that by increasing the
block size, information leakage reduces as shown in Fig. 1(a).
This figure succinctly demonstrates that an increment by an
order of magnitude in the block size does not always result in
an important reduction on the amount of information leaked
(see Patterns A and D, for instance). For small block sizes,
the leakage can be significant. For D = 1 KiB, the leakage in
workload D is of LFB = 4.265 bits, which is large given that
the number of distinct files is only 1K (≈ 10 bits). While one
can allege that min-entropy leakage is a rather crude metric,
it is unclear whether a personal storage service may leverage
additional information on the protected files. And further, it
has been shown in the literature that it is possible to identify
files via side channels like deduplication [7], for we believe it
is certainly an appropriate measure.

For completeness, we detail the computation of LFB when
the block size is D = 1 KiB in Table 1, as it is the case that
exhibits the best efficiency. After observing the batch size B,
the remaining uncertainty on the accessed user file becomes
between 35% to 66% of the initial uncertainty H∞(F). And

51

Pattern |B| H∞(F) H∞(F | B) LFB

A 25 9.966 5.322 4.644
B 92 2.687 1.784 0.903
C 104 6.695 3.660 3.035
D 207 6.592 2.327 4.265

Table 1: ORAM leakage of various access patterns at the file level.
Block size is assumed to be D = 1KiB.

consequently, the knowledge of B increases largely the one-
guess vulnerability of F in all the workloads.
An interesting observation is that in practice, it is possible

to encounter users that exhibit uniform access patterns, e.g.,
by copying or moving an entire folder to a new place, thereby
leaking a large volume of information as shown by Theorem 1
and empirically exemplified by Pattern A. Concretely, in this
case the bit leakage is the highest one, of log |B| = 4.644 bits,
despite that Pattern A presents the smallest set of potential
batch sizes B (equivalence classes).
Another important question is whether the increase in the

block size translates into a huge bandwidth waste. To better
understand this, Fig. 1(b) depicts BE against the block size.
As shown in this figure, BE can become three, or even four,
orders magnitude higher than the amount of useful content.
This suggests that increasing the block size to reduce leakage
does not pay off due to the poor bandwidth usage.

In conclusion, although several recent works have studied
how to make ORAM practical in an outsourced cloud storage
scenarios [14, 16, 8, 13, 17], arguing that a primary hurdle for
cloud ORAM deployment is its high bandwidth overhead, we
view that the block-oriented interface of ORAM can be also
problematic for cloud applications in terms of leakage, which
is “paradoxical”, given that the interest in ORAM has been
reinvigorated for its strong security guarantees on protecting
access patterns.

4.2 Zero Leakage → High Overheads
As we discuss in this section, completely preventing ORAM

leakage comes at high overheads in practice. We investigate
two simple solutions to this problem, and demonstrate that
achieving zero leakage incurs high overhead.

Solution 1 [Maximizing block size]. One naive strategy
could be to restrict the size of all batches to 1 by choosing as
the block size the size of the largest file. With this approach,
all accesses will yield exactly 1 output (i.e., batch size), thus
leaking no knowledge over this channel. This is trivial to see
using information theory:

Lemma 2. The smallest possible amount of min-entropy

leakage is met if the set of possible batch sizes B has size 1.

Proof. Here we have |B| = 1, so from (2),

LFB = log

(
∑

b∈B
maxf∈Fb

PF (f)

maxf∈F PF (f)

)

= log

(

maxf∈F PF (f)

maxf∈F PF (f)

)

= log 1 = 0.

The second equality follows from the fact that if there is only
a single equivalence class, it had to include the maximum of
the a priori distribution PF .

This strategy, though, is only useful when the variation in
size across files is small. When the variation is large, the fact

Idle time
Percentiles

25% 50% 75% 90% 99%
Pareto(1.38, 9.62) 11.85 15.89 26.24 50.92 269.4
Pareto(1.13, 9.17) 11.83 16.94 31.26 70.30 538.4
Pareto(0.79, 6.78) 9.75 16.30 39.20 125.1 2306.4

Table 2: Number of dummy accesses d during inactivity periods
in Dropbox.

of padding all files to the largest size can result in huge delay
to read and write small files and significant bandwidth waste
due to internal fragmentation. This situation is aggravated
by the fact that Path ORAM needs to read an entire path to
access the target (potentially padded) block of D bits, which
may raise the bandwidth overhead by more than a O(logN)-
factor.

Unfortunately, personal storage systems such as Dropbox
exhibit high variability in file size, being well fitted by heavy-
tailed distributions [5]. Similar behavior has been observed
in UB1 [6], and although 90% of files are smaller than 1MiB,
some of them are very large in size, making it impractical to
predict the size of the largest file in advance, and thus, of the
block size, as it is chosen offline, i.e., before the user puts any
file into his synchronization folder. This is clearly visible in
Fig. 1(b) when the block sizeD = 1MiB. TheBE is between
three to four orders of magnitude higher than what would be
expected by just fetching the small files of < 1 MiB in their
entirety as Dropbox, UB1, etc., do. In Dropbox, all the files
of less than 4MiBs are downloaded as a single chunk.

Solution 2 [Periodic ORAM access]. A second approach
could be to force ORAM to be accessed at a single, periodic
rate as proposed in [3] to protect against timing attacks. By
accessing the ORAM at a periodic rate, it is possible to fully
obfuscate the actual number of file blocks, because the server
cannot tell when a request for a file starts and terminates. If
no file access is triggered when the next periodic access to the
ORAM must be made, an indistinguishable“dummy”2access
is issued instead, thereby preserving obliviousness at the file
access level.

While this approach leaks no knowledge about the access
pattern, the main problem with it is its high overhead. If the
offline-selected, periodic rate is too small, it can take a long
time to access a file —hurting performance. On the contrary,
if the chosen rate is too high, huge bandwidth can be wasted
due to dummy accesses. The latter is particularly important,
since network-level efficiency is“pivotal” for cloud storage. It
suffices to think of the rich variety of data reduction methods
put in place like compression, deduplication, etc., to realize
the importance of efficient traffic usage in the cloud.

To give a sense of this, consider a personal storage service
like Dropbox or UB1. In these systems, traffic is bursty, with
long periods of inactivity. In Dropbox, for instance, the time
between two consecutive transfers is distributed according to
a Pareto distribution [5] with CDF 1−

(

k
x

)α
for x ≥ k, where

α > 0 is the shape parameter that determines the thickness
of the tail. Under this distribution, most clients exhibit short
inactivity periods while a handful of them stay idle for much
longer time. Assuming a periodic rate r, and a desired target
probability ǫ, it is easy to derive an upper bound on the

2A dummy access is an access made to a random leaf in the
tree. By ORAM’s security definition, this access appears to
be indistinguishable from a real access.

52

total number of dummy accesses d performed by 100ǫ% of
clients. Concretely, it can be easily seen that d ≤ r k

(1−ǫ)
1

α

.

Now taking the three typical configurations reported in [5],
Table 2 reports the number of dummy accesses d performed
during the idle periods when no request is needed for r = 1
sec. As shown in the table, the number of dummy accesses d
can be very high even for that small rate — the client must
wait 1 sec. before fetching the next block in the file. At 99th
percentile, for the third configurations, the ORAM software
might need to run more than 2K dummy accesses to leak no
information on the protected files. This will result in a large
bandwidth wastage in addition to a high latency file access.
That is, accessing a file split into s blocks will take s seconds
in this scenario, thereby yielding a poor trade-off. As before,
this solution is not practical for cloud storage —as it is in the
domain of secure processors [3, 1].

4.3 What to do?
Given that full protection is prohibitively expensive, a wise

path to follow should be, in lieu of blocking leakage entirely,
limiting it to a small, controllable constant — as it has been
done in the literature (see [3], and the references thereof).
From a theoretic standpoint, this can be easily performed

by virtue of Lemma 1, which bounds the maximal leakage to
log |B|. That is, given a L−bit leakage bound, it apparently
seems that it suffices to restrict the number of allowed batch
sizes to |B| ∈ O(2L) in order to let the leakage bound to hold.
In practice, however, the leakage due to the timing channel

created by the interface mismatch is not so simple to control
without increasing the bandwidth costs. The main reason is
the large variability in file sizes, which makes it very difficult
to determine the set B. To better understand this, consider
that a file is split into b blocks. A simple strategy to access
that file would be: First, to take the smallest batch size b∗ in
B that exceeds b, and then dispatch b∗ requests to the server,
adding b∗ − b dummy accesses if necessary to obfuscate the
real number of blocks to the server.

Although simple, the above approach could become very
inefficient if the allowed batch sizes do not represent well the
current access pattern. In other words, if the difference b∗−b
was usually large due to a bad composition of B, the presence
of dummy accesses would be the norm, hugely increasing the
bandwidth costs. In practice, this behavior is expected due
to the impossibility to adjust to the different file sizes during
different phases. This example evinces that this problem is
not trivial to solve, which constitutes a promising avenue of
further research.

5. CONCLUSIONS
In this research, we have shown that the standard block-

based ORAM interface can create a timing side-channel when
it is utilized as a substrate to build higher level abstractions
such as filesystems, object storage, personal storage services,
etc., of frequent use in cloud computing. We have elucidated
the existence of a trade-off between information leakage due
to this channel and performance, and shown the limitations
of the simple solutions to this problem, opening a new vein
of research.

Acknowledgements
This work was partially supported by European Commission
via the H2020 IOStack project (ICT-07-2014), and the Cloud

Services and Community Clouds Spanish project (TIN2013-
47245-C2-2-R).

6. REFERENCES
[1] A. Askarov, D. Zhang, and A. C. Myers. Predictive

black-box mitigation of timing channels. In CCS’10,
pages 297–307, 2010.

[2] V. Bindschaedler, M. Naveed, X. Pan, X. Wang, and
Y. Huang. Practicing oblivious access on cloud
storage: The gap, the fallacy, and the new way
forward. In CCS ’15, pages 837–849, 2015.

[3] C. Fletcher, L. Ren, X. Yu, M. van Dijk, O. Khan,
and S. Devadas. Suppressing the oblivious ram timing
channel while making information leakage and
program efficiency trade-offs. In HPCA’14, pages
213–224, 2014.

[4] O. Goldreich and R. Ostrovsky. Software protection
and simulation on oblivious rams. Journal of the
ACM, 43(3):431–473, 1996.

[5] G. Goncalves, I. Drago, A. Couto da Silva,
A. Borges Vieira, and J. Almeida. Modeling the
dropbox client behavior. In ICC’14, pages 1332–1337,
2014.

[6] R. Gracia-Tinedo, Y. Tian, J. Sampé, H. Harkous,
J. Lenton, P. Garćıa-López, M. Sánchez-Artigas, and
M. Vukolic. Dissecting ubuntuone: Autopsy of a
global-scale personal cloud back-end. In IMC’15, 2015.

[7] D. Harnik, B. Pinkas, and A. Shulman-Peleg. Side
channels in cloud services: Deduplication in cloud
storage. IEEE Security & Privacy, 8(6):40–47, 2010.

[8] J. R. Lorch, B. Parno, J. Mickens, M. Raykova, and
J. Schiffman. Shroud: Ensuring private access to
large-scale data in the data center. In FAST’13, pages
199–213, 2013.

[9] A. Rényi. On measures of entropy and information. In
4th Berkeley Symposium on Mathematics, Statistics

and Probability, pages 547–561, 1960.

[10] C. Sahin, V. Zakhary, A. El Abbadi, H. R. Lin, and
S. Tessaro. Taostore: Overcoming asynchronicity in
oblivious data storage. In S&P’16, pages 198–217,
2016.

[11] M. Sanchez-Artigas. Toward efficient data access
privacy in the cloud. IEEE Communications

Magazine, 51(11):39–45, 2013.

[12] G. Smith. On the foundations of quantitative
information flow. In FOSSACS’09, pages 288–302,
2009.

[13] E. Stefanov and E. Shi. Oblivistore: High performance
oblivious cloud storage. In IEEE S&P, pages 253–267,
2013.

[14] E. Stefanov, E. Shi, and D. Song. Towards practical
oblivious ram. In NDSS’12, 2012.

[15] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren,
X. Yu, and S. Devadas. Path o-ram: An extremely
simple oblivious ram protocol. In CCS, pages 299–310,
2013.

[16] P. Williams, R. Sion, and A. Tomescu. Privatefs: A
parallel oblivious file system. In CCS’12, pages
977–988, 2012.

[17] N. Wolfe, E. Zou, L. Ren, and X. Yu. Optimizing path
oram for cloud storage applications. arXiv preprint

arXiv:1501.01721, 2015.

53

	Introduction
	Preliminaries
	Metrics, Storage Side-Channels
	Trade-off Analysis of the ORAM interface
	Leakage vs. Efficiency
	Zero Leakage High Overheads
	What to do?

	Conclusions
	References

