
NG-DBSCAN: Scalable Density-Based Clustering for
Arbitrary Data

Alessandro Lulli1,2, Matteo Dell’Amico3, Pietro Michiardi4, Laura Ricci1,2
1University of Pisa, Italy
2ISTI, CNR, Pisa, Italy

3Symantec Research Labs, France
4EURECOM, Campus SophiaTech, France

1{lulli, ricci}@di.unipi.it 3matteo dellamico@symantec.com
4pietro.michiardi@eurecom.fr

ABSTRACT
We present NG-DBSCAN, an approximate density-based cluster-
ing algorithm that operates on arbitrary data and any symmetric
distance measure. The distributed design of our algorithm makes it
scalable to very large datasets; its approximate nature makes it fast,
yet capable of producing high quality clustering results. We pro-
vide a detailed overview of the steps of NG-DBSCAN, together
with their analysis. Our results, obtained through an extensive ex-
perimental campaign with real and synthetic data, substantiate our
claims about NG-DBSCAN’s performance and scalability.

1. INTRODUCTION
Clustering algorithms are fundamental in data analysis, provid-

ing an unsupervised way to aid understanding and interpreting data
by grouping similar objects together. With DBSCAN, Ester et
al. [9] introduced the idea of density-based clustering: grouping
data packed in high-density regions of the feature space. DB-
SCAN is very well known and appreciated (it received the KDD
test of time award in 2014) thanks to two very desirable features:
first, it separates “core points” appearing in dense regions of the
feature spaces from outliers (“noise points”) which are classified as
not belonging to any cluster; second, it recognizes clusters on com-
plex manifolds, having arbitrary shapes rather than being limited to
“ball-shaped” ones, which are all similar to a given centroid.

Unfortunately, two limitations restrict DBSCAN’s applicability
to increasingly common cases: first, it is difficult to run it on very
large databases as its scalability is limited; second, existing imple-
mentations do not lend themselves well to heterogeneous data sets
where item similarity is best represented via arbitrarily complex
functions. We target both problems, proposing an approximated,
scalable, distributed DBSCAN implementation which is able to
handle any symmetric distance function, and can handle arbitrary
data items, rather than being limited to points in Euclidean space.

Ester et al. claimed O (n logn) running time for data in d-di-
mensional Euclidean spaces, but Gan and Tao [12] recently proved
this claim wrong: for d > 3, DBSCAN requires at least Ω(n4/3)

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 3
Copyright 2016 VLDB Endowment 2150-8097/16/11.

time unless very significant breakthroughs can be made in theoreti-
cal computer science. As data size grows, this complexity becomes
difficult to handle; for this very reason, Gan and Tao proposed an
approximated, fast single-machine DBSCAN implementation for
points in the Euclidean space.

Several distributed DBSCAN implementations exist [6, 14, 16,
25]: they partition the feature space, running a single-machine
DBSCAN implementation on each partition, and then “stitch” the
work done on the border of each partition. As our results show, this
approach is effective only when dimensionality is low: with large
dimensionalities, the amount of work to connect each partition’s
results becomes unbearably large.

As we discuss in Section 2, the definition of DBSCAN itself
simply requires a distance measure between items; a large majority
of existing implementations, though, only consider data as points
in a d-dimensional space, and only support Euclidean distance be-
tween them. This is the case for the distributed implementations
referred to above, which base the partitioning on the requirement
that pieces of data are points in an Euclidean space. This is incon-
venient in the ever more common case of heterogeneous data sets,
where data items fed to the clustering algorithm are made of one
or more fields with arbitrary type: consider, for example, the case
of textual data where edit distance is a desireable measure. Fur-
thermore, the computational cost of the last “stitching” step grows
quickly as the number d of dimensions increases, even if the intrin-
sic data dimensionality remains low.

The typical way of coping with such limitations is extracting
an array of numeric features from the original data: for example,
textual data is converted to a vector via the word2vec [5] algo-
rithm. Then, distance between these vectors is used as a surrogate
for the desired distance function between data. Our proposal, NG-
DBSCAN (described in Section 3), gives instead the flexibility of
specifying any simmetric distance function on the original data.
Recognizing from the contribution of Gan and Tao that computing
DBSCAN exactly imposes limits to scalability, our approach com-
putes instead an approximation to the exact DBSCAN clustering.
Rather than partitioning an Euclidean space – which is impossi-
ble with arbitrary data and has problems with high dimensionality,
as discussed before – our algorithm is based on a vertex-centric
design, whereby we compute a neighbor graph, a distributed data
structure describing the “neighborhood” of each piece of data (i.e.,
a set containing its most similar items). We compute the clusters
based on the content of the neighbor graph, whose acronym gives
the name to NG-DBSCAN.

NG-DBSCAN is implemented in Spark, and it is suitable to be
ported to frameworks that enable distributed vertex-centric compu-

157

tation; in our experimental evaluation we evaluate both the scala-
bility of the algorithm and the quality of the results, i.e., how close
these results are to those of an exact computation of DBSCAN. We
compare NG-DBSCAN with competing DBSCAN implementa-
tions, on real and synthetic datasets. All details on the experimental
setup are discussed in Section 4.

Our results, reported in Section 5, show that NG-DBSCAN of-
ten outperforms competing DBSCAN implementations, while the
approximation imposes small or negligible impact on the results.
Furthermore, we investigate the case of clustering text based on a
word2vec embedding: we show that – if one is indeed interested
in clustering text based on edit-distance similarity – in the existing
approaches the penalty in terms of clustering quality is substantial,
unlike what happens with the approach enabled by NG-DBSCAN.

We consider that this line of research opens the door to several
interesting and important contributions. With the concluding re-
marks of Section 6, we outline our future research lines, including
an adaptation of this approach to streaming data, and supporting
regression and classification using similar approaches.
Summary of Contributions. NG-DBSCAN is an approximated
and distributed implementation of DBSCAN. Its main merits are:

• Efficiency. It often outperforms other DBSCAN distribu-
ted implementations, while the approximation has a small to
negligible impact on results.

• Versatility. The vertex-centric approach enables distribu-
tion without needing Euclidean spaces to partition. NG-DB-
SCAN allows experts to represent item dissimilarity through
any symmetric distance function, allowing them to tailor their
definition to domain-specific knowledge.

Our experimental evaluation supports these claims through an
extensive comparison between NG-DBSCAN and alternative im-
plementations, on a variety of real and synthetic datasets.

2. BACKGROUND AND RELATED WORK
In this Section we first revisit the DBSCAN algorithm, then we

discuss existing distributed implementations of density-based clus-
tering. We conclude with an overview of graph-based clustering
and ad-hoc techniques to cluster text and/or high-dimensional data.

2.1 The DBSCAN Algorithm
Ester et al. defined DBSCAN as a sequential algorithm [9].

Data points are clustered by density, which is defined via two pa-
rameters: ε and MinPts. The ε-neighborhood of a point p is the set
of points within distance ε from p.

Core points are those with at least MinPts points in their ε-neigh-
borhood. Other points are either border or noise points: border
points have at least one core point in their ε-neighborhood, whereas
noise points do not. Noise points are assigned to no cluster.

A cluster is formed by the set of density-reachable points from
a given core point c: those in c’s ε-neighborhood and, recursively,
those that are density-reachable from core points in c’s ε-neighbor-
hood. DBSCAN identifies clusters by iteratively picking unlabeled
core points and identifying their clusters by exploring density-reach-
able points, until all core points are labeled. Note that DBSCAN
clustering results can vary slightly if the order in which clusters are
explored changes, since border points with several core points in
their ε-neighborhood may be assigned to different clusters.

For 17 years, the time complexity of DBSCAN has been be-
lieved to be O (n logn). Recently, Gan and Tao [12] discovered
that the complexity is in fact higher – which explains why existing

implementations only evaluated DBSCAN for rather limited num-
bers of points – and proposed an approximate algorithm, ρ-DB-
SCAN, running in O (n) time. Unfortunately, the data structure
at the core of ρ-DBSCAN does not allow handling arbitrary data
or similarity measures, and only Euclidean distance is used in both
the description and experimental evaluation.

We remark that the definition of DBSCAN revolves on the abil-
ity of finding the ε-neighborhood of each data point: as long as a
distance measure is given, the ε-neighborhood of a point p is well-
defined no matter what the type of p is. NG-DBSCAN does not
impose any limitation on the type of data points nor on the proper-
ties of the distance function, except symmetry.

2.2 Distributed Density-Based Clustering
MR-DBSCAN [14] is the first proposal of a distributed DB-

SCAN implementation realized as a 4-stage MapReduce algorithm:
partitioning, clustering, and two stages devoted to merging. This
approach concentrates on defining a clever partitioning of data in
a d-dimensional Euclidean space, where each partition is assigned
to a worker node. A modified version of PDBSCAN [31], a pop-
ular DBSCAN implementation, is executed on the sub-space of
each partition. Nodes within distance ε from a partition’s border
are replicated, and two stages are in charge of merging clusters be-
tween different partitions. Unfortunately, MR-DBSCAN’s evalu-
ation does not compare it to other DBSCAN implementations, and
only considers points in a 2D space.

In the Evaluation section, we compare our results to SPARK-
DBSCAN and IRVINGC-DBSCAN, two implementations in-
spired by MR-DBSCAN and implemented in Apache Spark.

DBSCAN-MR [6] is a similar approach which again imple-
ments DBSCAN as a 4-stage MapReduce algorithm, but uses a
k-d tree for the single-machine implementation, and a partition-
ing algorithm that recursively divides data in slices to minimize the
number of boundary points and to balance the computation.

MR. SCAN [30] is another similar 4-stage implementation, this
time exploiting GPGPU acceleration for the local clustering stage.
Authors only implemented a 2D version, but claim it is feasible to
extend the approach to any d-dimensional Euclidean space.

PARDICLE [25] is an approximated algorithm for Euclidean
spaces, focused on density estimation rather than exact ε-neigh-
borhood queries. It uses MPI, and adjusts the estimation precision
according to how close the density of a given area is with respect
to the ε threshold separating core and non-core points.

DBCURE-MR [16] is a density-based MapReduce algorithm
which is not equivalent to DBSCAN: rather than circular ε-neigh-
borhoods, it is based on ellipsoidal τ -neighborhoods. DBCURE-
MR is again implemented as a 4-stage MapReduce algorithm.

Table 1 summarizes current parallel implementations of density-
based clustering algorithms, together with their execution environ-
ment, and their features. In all these approaches, the algorithm
is distributed by partitioning a d-dimensional space, and only Eu-
clidean distance is supported. Our approach to parallelization does
not involve data partitioning, and is instead based on a vertex-
centric design, which ultimately is the key to support arbitrary data
and similarity measures between points, and to avoid scalability
problems due to high-dimensional data.

2.3 Graph-Based Clustering
Graph-based clustering algorithms [10, 27] take as input graphs

whose edges represent item similarity. These approaches can be
seen as related to NG-DBSCAN, since its second phase takes a
graph as input to build a clustering, which in our case is designed
to approximate DBSCAN. The difference with these approaches,

158

Table 1: Overview of parallel density-based clustering algorithms.

Name Parallel model Implements
DBSCAN Approximated Partitioner required Data object

type
Distance function
supported

ρ-DBSCAN [12] single machine yes yes data on a grid point in n-D Euclidean
MR-DBSCAN [14] MapReduce yes no yes point in n-D Euclidean
SPARK-DBSCAN Apache Spark yes no yes point in n-D Euclidean
IRVINGC-DBSCAN Apache Spark yes no yes point in 2-D Euclidean
DBSCAN-MR [6] MapReduce yes no yes point in n-D Euclidean
MR. SCAN [30] MRNet + GPGPU yes no yes point in 2-D Euclidean
PARDICLE [25] MPI yes yes yes point in n-D Euclidean
DBCURE-MR [16] MapReduce no no yes point in n-D Euclidean
NG-DBSCAN MapReduce yes yes no arbitrary type arbitrary symmetric

which consider the input graph as given, is that our approach builds
the graph in its first phase; doing this efficiently is not trivial, since
some of the most common choices (such as ε-neighbor or k-nearest
neighbor graphs) requireO(n2) computational cost for generic dis-
tance functions; our approximated approach obtains a substantial
cut on these costs.

2.4 Density-Based Clustering
for High-Dimensional Data

We conclude our discussion of related work with density-based
approaches suitable for text and high-dimensional data in general.

Tran et al. [28] propose a method to identify clusters with dif-
ferent densities. Instead of defining a threshold for a local density
function, low-density regions separating two clusters can be de-
tected by calculating the number of shared neighbors. If the num-
ber of shared neighbors is below a threshold, then the two objects
belong to two different clusters. Tran et al. report that their ap-
proach has high computational complexity, and the algorithm was
evaluated using only a small dataset (below 1 000 objects). In addi-
tion, as the authors point out, this approach is unsuited for finding
clusters that are very elongated or have particular shapes.

Zhou et al. [32] define a different way to identify dense regions.
For each object p, their algorithm computes the ratio between the
size of p’s ε-neighborhood and those of its neighbors, to distinguish
nodes that are at the center of clusters. This approach is once again
only evaluated and compared with DBSCAN in a 2D space.

3. NG-DBSCAN: APPROXIMATE AND
FLEXIBLE DBSCAN

NG-DBSCAN is an approximate, distributed, scalable algorithm
for density-based clustering, supporting any symmetric distance
function. We adopt the vertex-centric, or “think like a vertex” pro-
gramming paradigm, in which computation is partitioned by and
logically performed at the vertexes of a graph, and vertexes ex-
change messages. The vertex-centric approach is widely used due
to its scalability properties and expressivity [23].

Several vertex-centric computing frameworks exist [1, 13, 22]:
these are distributed systems that iteratively execute a user-defined
program over vertices of a graph, accepting input data from adja-
cent vertices and emitting output data that is communicated along
outgoing edges. In particular, our work relies on frameworks sup-
porting Valiant’s Bulk Synchronous Parallel (BSP) model [29], which
employs a shared nothing architecture geared toward synchronous
execution. Next, for clarity and generality of exposition, we gloss
over the technicalities of the framework, focusing instead on the
principles underlying our algorithm. Our implementation uses the
Apache Spark framework; its source code is available online.1

1
https://github.com/alessandrolulli/gdbscan

3.1 Overview
Together with efficiency, the main design goal of NG-DBSCAN

is flexibility: indeed, it handles arbitrary data and distance func-
tions. We require that the distance function d is symmetric: that is,
d(x, y) = d(y, x) for all x and y. It would be technically possi-
ble to modify NG-DBSCAN to allow asymmetric distance, but for
clustering – where the goal is grouping similar items – asymmetry
is conceptually problematic, since it is difficult to choose whether
x should be grouped with y if, for example, d(x, y) is large and
d(y, x) is small. If needed, we advise using standard symmetriza-
tion techniques: for example, defining a d′(x, y) equal to the mini-
mum, maximum or average between d(x, y) and d(y, x) [11].

The main reason why DBSCAN is expensive when applied to
arbitrary distance measures is that it requires retrieving each point’s
ε-neighborhood, for which the distance between all node pairs needs
to be computed, resulting in O

(
n2

)
calls to the distance function.

NG-DBSCAN avoids this cost by dropping the requirement of
computing ε-neighborhoods exactly, and proceeds in two phases.

The first phase creates the ε-graph, a data structure which will
be used to avoid ε-neighborhood queries: ε-graph nodes are data
points, and each node’s neighbors are a subset of its ε-neighbor-
hood. This phase is implemented through an auxiliary graph called
neighbor graph which gradually converges from a random starting
configuration towards an approximation of a k-nearest neighbor (k-
NN) graph by computing the distance of nodes at a 2-hop distance
in the neighbor graph; as soon as pairs of nodes at distance ε or less
are found, they are inserted in the ε-graph.

The second phase takes the ε-graph as an input and computes
the clusters which are the final output of NG-DBSCAN; cheap
neighbor lookups on the ε-graph replace expensive ε-neighborhood
queries. In its original description, DBSCAN is a sequential algo-
rithm. We base our parallel implementation on the realization that
a set of density-reachable core nodes corresponds to a connected
component in the ε-graph– the graph where each core node is con-
nected to all core nodes in its ε-neighborhood. As such, our Phase
2 implementation builds on a distributed algorithm to compute con-
nected components, amending it to distinguish between core nodes
(which generate clusters), noise points (which do not participate to
this phase) and border nodes (which are treated as a special case,
as they do not generate clusters).

NG-DBSCAN’s parameters determine a trade-off between speed
and accuracy, in terms of fidelity of the results to the exact DB-
SCAN implementation: in the following, we describe in detail our
algorithm and its parameters; in Section 5.4, we quantify this trade-
off and provide recommended settings.

3.2 Phase 1: Building the ε-Graph
As introduced above, Phase 1 builds the ε-graph, that will be

used to avoid expensive ε-neighborhood queries in Phase 2. We

159

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7

1 2 3

4 5 6

7

1 2 3

4 5 6

7 8 9

1 3

6

1 3

6

1

2

3
1

2

3
1

2

3

Initialization Iteration 1 Iteration 2 Iteration 3

epsilon
graph

neighbor
graph

Figure 1: Phase 1: ε-graph construction.

use an auxiliary structure called neighbor graph, which is a directed
graph having data items as nodes and distances between them as
edge weights.

The neighbor graph is initialised by connecting each node to
k random other nodes, where k is an NG-DBSCAN parameter.
At each iteration, all pairs of nodes (x, y) separated by 2 hops in
the neighbor graph are considered: if the distance between them is
smaller than the largest weight on an outgoing edge e from either
node, then e is discarded and replaced with (x, y). Through this
step, as soon as a pair of nodes at distance ε or less is discovered,
the corresponding edge is added to the ε-graph.

The neighbor graph and its evolution are inspired by the ap-
proach used by Dong et al. [8] to compute approximate k-NN graphs.
By letting our algorithm run indefinitely, the neighbor graph would
indeed converge to a k-NN graph approximation: in our case, rather
than being interested in finding the k nearest neighbors of an item,
we want to be able to distinguish whether that item is a core point.
Hence, as soon as a node hasMmax neighbors in the ε-graph, where
Mmax is an NG-DBSCAN parameter, we consider that we have
enough information about that node and we remove it from the
neighbor graph to speed up the computation. Mmax and k handle
the speed-accuracy trade-off: optimal values may vary depending
on datasets, but our experimental study in Sections 5.4.2 and 5.4.3,
shows that choosing k = 10 and Mmax = max(MinPts, 2k)
provides consistently good results. We consider automatic approaches
to set both variables as an open issue for further work.

Phase 1 is repeated iteratively: details on the termination condi-
tion are described in Section 3.2.1.
Example. Figure 1 illustrates Phase 1 with a running example;
in this case, for simplicity, k = Mmax = 2. The algorithm is
initialised by creating an ε-graph with no edges and a neighbor
graph with k = 2 outgoing edges per nodes chosen at random.

Each iteration proceeds through three steps, indicated in Figure 1
with hexagons labeled 1, 2, and 3. In step 1, the directed neighbor
graph is transformed in an undirected one. Then, through the tran-
sition labeled 2, edges are added to the ε-graph if their distance is
≤ε. For instance, edge (2, 6) is added to the ε-graph in the first it-
eration. Finally, in step 3 each node explores its two-hop neighbor-
hood and builds a new neighbor graph while keeping connections
to the k closest nodes. Nodes with at least Mmax neighbors in the
ε-graph are deactivated (marked in grey) and will disappear from
the neighbor graph in the following iteration.

3.2.1 Termination Condition
In addition to having a maximum number iter of iterations to en-

sure termination in degenerate cases with a majority of noise points,
phase 1 terminates according to two parameters: Tn and Tr .

Informally, the idea is as follows. Our algorithm proceeds by ex-
amining, in each iteration, only active nodes in the neighbor graph:
the number of active nodes a(t) decreases as the algorithm runs.
Hence, it would be tempting to wait for t∗ iterations, such that
a(t∗) = 0. However, the careful reader will recall that noise points
cannot be deactivated: as such, a sensible alternative is to set the
stop condition to t∗ such that a(t∗) < Tn.

The above inequality alone is difficult to tune: small values of
Tn might stop the algorithm too late, performing long computa-
tions with limited value in terms of clustering quality. To overcome
this problem, we introduce an additional threshold that operates on
the number of nodes that has been deactivated in the last iteration
∆a(t) = a(t − 1) − a(t): we complement our stop condition by
finding t∗ such that ∆a(t∗) < Tr .

In Figure 6 on page 10 we see, from an example run of NG-
DBSCAN, the number of active nodes a(t) and of nodes removed
from the neighbor graph in the last iteration, ∆a(t). Neither of
the above conditions alone would be a good termination criterion:
both would stop the algorithm too early. Indeed, ∆a(t∗) < Tr
can be satisfied both at the early stage of the algorithm or toward
its convergence, while a(t∗) < Tn makes the algorithm progress
past the few first iterations. Then, towards convergence, the Tr
inequality allows the algorithm to continue past the Tn threshold,
but avoids running for too long.

We have found empirically (see Section 5.4.1) that setting Tn =
0.7n and Tr = 0.01n yields fast convergence while keeping the
results similar to those of an exact DBSCAN computation.

3.2.2 Implementation Details
Since NG-DBSCAN accepts arbitrary distance functions, com-

puting some of them can be very expensive: a solution for this is
memoization (i.e., caching results to avoid computing the distance
function between the same elements several times). Writing a so-
lution to perform memoization is almost trivial in a high-level lan-
guage such as Scala,2 but various design choices – such as choice
of data structure for the cache and/or eviction policy – are available,
and choosing appropriate ones depends on the particular function
to be evaluated. We therefore consider memoization as an orthogo-
nal problem, and rely on users to provide a distance function which
performs memoization if it is useful or necessary.

To limit the communication cost of the algorithm, we adopt two
techniques. The first is an “altruistic” mechanism to compute neigh-
borhoods: each node computes distances between all its neighbors
in the neighbor graph, and sends them the k nodes with the smallest
distance. In this way it is not necessary to collect, at each node, in-
formation about each of their neighbors-of-neighbors. The second
technique avoids that nodes with many neighbors become compu-
tation bottlenecks. We introduce a parameter ρ to avoid bad perfor-
mance in degenerate cases, limiting the number of nodes consid-
ered in each neighborhood to ρk.

Finally, to avoid memory issues that typically arise in vertex-
centric computing frameworks relying on RAM to store messages,
we have implemented an option to divide a single logical iteration
(that is, a super-step in the BSP terminology [23]) into multiple
ones. Specifically, an optional parameter S allows splitting each
iteration in t = dn̂/Se sub-iterations, where n̂ is the number of
nodes currently in the neighbor graph. When this option is set,

2See, e.g., http://stackoverflow.com/a/16257628.

160

Algorithm 1: Phase 1 – ε-graph construction.

1 εG← new undirected, unweighted graph // ε-graph
2 NG← random neighbor graph initialization
3 for i← 1 . . . iter do

// Add reverse edges
4 for n ∈ active nodes in NG do in parallel
5 for (n, u, w)← NG.edges from(n) do
6 NG.add edge(u, n, w)

// Compute distances and update εG
7 for n← active nodes in NG do in parallel
8 N ← at most ρk nodes from NG.neighbors(n)
9 for u← N do

10 for v ← N \ {u} do
11 w ← DISTANCE(u, v)
12 NG.add edge(u, v, w)
13 if w 6 ε then εG.add edge(u, v)

// Shrink NG
14 ∆← 0 // number of removed nodes
15 for n← active nodes in NG do in parallel
16 if |εG.neighbors(n)| >Mmax then
17 NG.remove node(n)
18 ∆← ∆ + 1

// Termination condition
19 if |NG.nodes| < Tn ∧∆ < Tr then break

// Keep the k closest neighbors in NG
20 for n ∈ active nodes in NG do in parallel
21 l← NG.edges from(n)
22 remove from l the k edges with smallest weights
23 for (n, u, w)← l do
24 NG.delete edge(n, u, w)

25 return εG

at most S nodes use the altruistic approach to explore distances
between neighbors in each sub-iteration. Each node is activated
exactly once within the t sub-iterations, therefore this option has
no impact of the final results which are equivalent to the ones with
logical iterations only.

3.2.3 Phase 1 in Detail
Algorithm 1 shows the pseudocode of the ε-graph construction

phase. For clarity and brevity, we consider graphs as distributed
data structures, and describe the algorithm in terms of high-level
graph operations such as “add edge” or “remove node”. The al-
gorithm is a series of steps, each introduced by the “for . . . do
in parallel” loop and separated by synchronization barriers. Each
node logically executes the code in such loops at the same time, and
modification to the graphs are visible only at the end of the loop.
Operations such as “add edge(u, v)” are implemented by sending
messages to the node at the start of the edge. For details on how dis-
tributed graph-parallel computation is implemented through a BSP
paradigm, we refer to work such as Pregel [22] or GraphX [13].

The algorithm uses the neighbor graph NG to drive the com-
putation, and stores the final result in the ε-graph εG. After ini-
tializing NG by connecting each node to k random neighbors the
main iteration starts. In lines 4–4, which correspond to step 1 of
Figure 1 on the preceding page, we convert NG to an undirected
graph by adding for each edge another one in the opposite direc-
tion. Lines 7–7 are the most expensive part of the algorithm, where
each node computes the distances between each pair of neighbors;
pairs of nodes at distance at most ε get added to εG as in step 2 of
Figure 1. In lines 15–15, NG is shrunk by removing nodes hav-

1 2 3

4 5 6

7 8 9

Coreness
dissemination

Iteration 1: max
selection step

Iteration 1:
pruning step

Iteration 2: max
selection step

seeds
identification

tree creation /
propagation

1 3

4 5 6

9

1 3

4 5 6

9

1 3

4 5 6

9

1 3

4 5 6

9

3

5

1 3

4 5 6

9

Figure 2: Phase 2 – dense region discovery.

ing at least Mmax neighbors in εG. The termination condition is
checked at line 19, and if the computation continues the edges that
do not correspond to the k closest neighbors found are removed
from NG in lines 20–20, corresponding to step 3 of Figure 1.

3.2.4 Complexity Analysis
Unless the early termination condition is met, Phase 1 runs for a

user-specified number of iterations. Since the number of nodes in
the neighbor graph decreases with time, the first iterations are the
most expensive (i.e., when a node is removed from the neighbor
graph, it is never added again). Hence, we study the complexity
of the first iteration, which has the highest cost since all nodes are
present in the neighbor graph. Note that here we consider the cost
of a logical iteration, corresponding to the sum of its sub-iterations
(see Section 3.2.2) if parameter S is defined.

The loop of lines lines 4–4 requires m steps, where m = kn is
the number of edges in NG. Hence, it has complexity O(kn).

The loop of lines 7–7 computes distances between at most ρk
neighbors of each node, where NG has at most 2kn edges, and
each node has at least k neighbors. The worst case is when neigh-
bor lists are distributed as unevenly as possible, that is when n/(ρ−
1) nodes have ρk neighbors, and all the others only have k. In that
case, O(n/ρ) nodes would compute O

(
ρ2k2

)
comparisons, and

O(n) nodes computing O(k2) comparisons. The result is

O
(
n

ρ
ρ2k2 + nk2

)
= O(ρnk2).

Since each distance computation can add one new edge to NG,
the graph now has at most O(ρnk2) edges. The loops of lines
lines 15–15, and lines 20–20, each in the worst case act onO(ρnk2)
edges. The operations of line 22 can be implemented efficiently
with a total cost of O(ρnk2 + nk log k) = O(ρnk2) with priority
queue data structures such as binary heaps.

In conclusion, the total computational complexity for an iteration
of Phase 1 is O(ρnk2). Note that, in general, ρ and k should take
small values (the default values we suggest in Section 5.4 are ρ = 3
and k = 10), therefore the computation cost is dominated by n.

3.3 Phase 2: Discovering Dense Regions
As introduced in Section 3.1, Phase 2 outputs the clustering by

taking as input the ε-graph, performing neighbor lookups on it in-
stead of expensive ε-neighborhood queries. Realizing the analo-
gies between density-reachability and connected components, we
inspire our implementation on Cracker [21], an efficient, distributed
method to find connected components in a graph.

We attribute node roles based on their properties in the ε-graph:

161

Algorithm 2: Phase 2 – Discovering dense regions.

1 G = Coreness Dissemination(εG)
2 for n← nodes in G do in parallel
3 n.Active← True
4 T ← empty graph // Propagation forest
// Seed Identification

5 while |G.nodes| > 0 do
// Max Selection Step

6 H ← empty graph
7 for n← G.nodes do in parallel
8 nmax ← maxCoreNode(G.neighbors(n) ∪ {n})
9 if n is not-core then

10 H.add edge(n, nmax)
11 H.add edge(nmax, nmax)

12 else
13 for v ← G.neighbors(n) ∪ {n} do
14 H.add edge(v, nmax)

// Pruning Step
15 G← empty graph
16 for n← H.nodes do in parallel
17 nmax ← maxCoreNode(H.neighbors(n))
18 if n is not-core then
19 n.Active← False
20 T.add edge(nmax, n)

21 else
22 if |H.neighbors(n)| > 1 then
23 for v ← H.neighbors(n) \ {nmax} do
24 G.add edge(v, nmax)
25 G.add edge(nmax, v)

26 if n /∈ H.neighbors(n) then
27 n.Active← False
28 T.add edge(nmax, n)

29 if IsSeed (n) then
30 n.Active← False
31 return Seed Propagation(PropagationTree)

nodes with at leastMinPts−1 neighbors are considered core;3 be-
tween non-core nodes, those with core nodes as neighbors are con-
sidered border nodes, while others will be treated as noise. Noise
nodes are immediately deactivated, and they will not contribute to
the computation anymore.

Like several other algorithms for graph connectivity, our algo-
rithm requires a total ordering between nodes, such that each clus-
ter will be labeled with the smallest or largest node according to
this ordering. A typical choice is an arbitrary node identifier; for
performance reasons that we discuss in the following, we use the
node with the largest degree instead and resort to the node identi-
fier to break ties in favor of the smaller ID. In the following, we
will refer to the (degree, nodeID) pair as coreness; as a result of
the algorithm, each cluster will be tagged with the ID of the high-
est coreness node in its cluster. We will call seed of a cluster the
node with the highest coreness.

Phase 2 is illustrated in Algorithm 2; the algorithm proceeds in
three steps: after an initalization step called coreness dissemina-
tion, an iterative step called seed identification is performed until
convergence. Clusters are finally built in the seed propagation step.
We describe them in the following, with the help of the running ex-
ample in Figure 2 on the preceding page.

3The MinPts − 1 value stems from the fact that, in the original DBSCAN imple-
mentation, a node itself counts when evaluating the cardinality of its ε-neighborhood.

Coreness dissemination. In this step, each node sends a message
with its coreness value to its neighbors in the ε-graph. For example.
in Figure 2, nodes 3 and 5 have the highest coreness; 1, 4, 6 and 9
are border nodes, and the others are noise. We omit the pseudocode
for brevity. Note that, although the following step modify the graph
structure, coreness values are immutable.
Seed Identification. This step finds the seeds of all clusters, and
builds a set of trees that we call propagation forest that ultimately
link each core and border node to their seed. This step proceeds
by alternating two sub-steps until convergence: Max Selection Step
and Pruning Step. The ε-graph is iteratively simplified, until only
seed nodes remain in it; at the end of this step, information to re-
construct clusters is encoded in the propagation forest.

With reference to Algorithm 2, in the Max Selection Step each
node identifies the current neighbor with maximum coreness as its
proposed seed (Line 8); each node will create a link between each
of its neighbors – plus themselves – and the seed it proposes. Bor-
der nodes have a special behavior (Line 9)): they only propose a
seed for themselves and their own proposed seed rather than for
their whole neighborhood (Line 14)). In the first iteration of Fig-
ure 2, for example, node 4 – which is a border node – is responsible
for creating edges (4, 5) and (5, 5). On the other hand, node 5 –
which is a core node – identifies 3 as a proposed seed, and creates
edges (4, 3), (5, 3), and (3, 3).

In the Pruning Step, starting in Line 15, nodes not proposed as
seeds (i.e., those with no incoming edges) are deactivated (Line 27).
An edge between deactivated nodes and their outgoing edge with
highest coreness is created (Line 28). For example, in the first iter-
ation of the algorithm, node 4 is deactivated and the (4, 3) edge is
created in the propagation forest.

Eventually, the seeds remain the only active nodes in the compu-
tation. Upon their deactivation, seed identification terminates and
seed propagation is triggered.
Seed Propagation. The output of the seed identification step is the
propagation forest: a dyrected acyclic graph where each node with
zero out-degree is the seed of a cluster, and the root of a tree cov-
ering all nodes in the cluster. Clusters are generated by exploring
these trees; the pseudocode of this phase is omitted for brevity.

3.3.1 Discussion
Phase 2 of NG-DBSCAN is implemented on the blueprint of

the Cracker algorithm, to retain its main advantages: a node-centric
design, which nicely blends with phase 1 of NG-DBSCAN, and a
technique to speed up convergence by deactivating nodes that can-
not be seeds of a cluster, which also contributes to decrease the
algorithm complexity. For these reasons, the complexity analysis
of Phase 2 follows the same lines of Cracker, albeit the two al-
gorithms substantially differ in their output: we defer the interested
reader to [19], where it has been shown empirically that Cracker re-
quires a number of messages and iterations that respectively scale
asO(nm/ logn) messages andO(logn) iterations, where n is the
number of nodes and m the number of edges.

The choice of total ordering between nodes does not impact the
final results. However, the time needed to reach convergence de-
pends on the number of iterations, which is equal to the height
of the tallest tree in the propagation forest. Our heuristic choice
of coreness, driven by degree, performs very well in this respect,
since links in the propagation forest point towards the densest areas
in the clusters, resulting in trees that are wide rather than tall.

4. EXPERIMENTAL SETUP
We evaluate NG-DBSCAN through a comprehensive set of ex-

periments, evaluating well-known measures of clustering quality

162

on real and synthetic datasets, and comparing it to alternative ap-
proaches. In the following, we provide details about our setup.

4.1 Experimental Platform
All the experiments have been conducted on a cluster running

Ubuntu Linux consisting of 17 nodes (1 master and 16 slaves),
each equipped with 12 GB of RAM, a 4-core CPU and a 1 Gbit
interconnect. Both the implementation of our approach and the al-
ternative algorithms we use for our comparative analysis use the
Apache Spark [2] API.4

4.2 Evaluation Metrics
We now discuss the metrics we use to analyse the performance

of our approach. We also proceed with manual investigation of the
clusters we obtain on some dataset, using domain knowledge to
evaluate their quality. We use well-known quality measures [7,18]:

• Compactness: measures how closely related the items in a
cluster are. We obtain the compactness by computing the av-
erage pairwise similarity among items in each cluster. Higher
values are preferred.

• Separation: measures how well clusters are separate from
each other. Separation is obtained by computing the average
similarity between items in different clusters. Lower values
are preferred.

• Recall: this metric relates two different data clusterings. Us-
ing clustering C as a reference, all node pairs that belong to
the same cluster in C are generated. The recall of clustering
D is the fraction of those pairs that are in the same cluster
in D as well. In particular, we use as a reference the exact
clustering we obtain with the standard DBSCAN implemen-
tation of the SciKit library [26]. Higher values are preferred.

Note that computing the above metrics is computationally as hard
as computing the clustering we intend to evaluate. For this reason,
we resort to uniform sampling: instead of computing the all-to-
all pairwise similarity between items, we pick items uniformly at
random, with a sampling rate of 1%.5

Additionally, we also consider algorithm Speed-Up: this metric
measures the algorithm runtime improvement when increasing the
number of cores dedicated to the computation, using 4 cores (a
single machine) as the baseline.

Our results are obtained by averaging 5 independent runs for
each data point. In all plots we also show the standard deviation of
the metrics used through error bars; we remark that in some cases,
they are too small to be visible.

4.3 The Datasets
Next, we describe the datasets used in our experiments. We con-

sider the following datasets:

• Twitter Dataset. We collected6 5 602 349 geotagged tweets
sent in USA the week between 2012/02/15 and 2012/02/21.
Each tweet is in JSON format. This dataset is used to eval-
uate NG-DBSCAN in two distinct cases: (i) using the lat-
itude and longitude values to cluster tweets using the Eu-
clidean distance metric, (ii) using the text field to cluster
tweets according to the Jaro-Winkler metric [15].

4Precisely, we use the Scala API and rely on advanced features such as RDD caching
for efficiency reasons.
5We increase the sampling rate up to 10% for clusters with less than 10 000 elements.
6We implemented a simple crawler following the methodology described in [17]. Al-
though Twitter ToS does not allow such data to be shared, it is rather simple to write
such a crawler and obtain similar data.

• Spam Dataset. A subset of SPAM emails collected by Syman-
tec Research Labs, between 2010-10-01 and 2012-01-02, which
is composed by 3 886 371 email samples. Each item of the
dataset is formatted in JSON and contains the common fea-
tures of an email, such as: subject, sending date, geographi-
cal information, the bot-net used for the SPAM campaign as
labeled by Symantec systems, and many more. For instance,
a subject of an email in the dataset is “19.12.2011 Rolex For
You -85%” and the sending day is “2011-12-19”.

We also use synthetically generated input using the SciKit li-
brary [26]. We generated three different types of input called, cir-
cle, moon and blobs. These graphs are usually considered as a
baseline for testing clustering algorithms in a d-dimensional space.

4.4 Alternative Approaches
We compare NG-DBSCAN to existing algorithms that produce

data clustering. We use the following alternatives:

• DBSCAN: this approach uses the SciKit library DBSCAN
implementation [26]. Clustering results obtained with this
method can be thought of as our baseline, to which we com-
pare NG-DBSCAN, in terms of clustering recall.

• SPARK-DBSCAN: this approach uses a parallel DBSCAN
implementation for Apache Spark.7 This work is an imple-
mentation of MR-DBSCAN (see Section 2). We treat this
method as our direct competitor, and compare the runtime
performance and clustering quality.

• IRVINGC-DBSCAN: This is another Spark implementa-
tion inspired by MR-DBSCAN.8 With respect to SPARK-
DBSCAN, this implementation is often faster but limited to
2D data.

• k-MEANS: we convert text to vectors using word2vec [5],
and cluster those vectors using the k-MEANS implementation
in Spark’s MLLib library [3]. We consider this approach,
as described in [4], as a baseline for clustering quality; we
evaluate it as an alternative to NG-DBSCAN for text data.

Because it is not a distributed algorithm, we do not include here
comparisons to ρ-DBSCAN [12]. As it can be expected from an
efficient single-machine algorithm [24], it is very efficient as long
as its memory requirements fit into a single machine, since commu-
nication costs are lower by one or more orders of magnitude. We
remark that we obtained segmentation fault errors not allowing us
to run ρ-DBSCAN on data points with more than 8 dimensions;
Gan and Tao’s own evaluation [12] considers only data points hav-
ing maximum dimensionality 7.

5. RESULTS
We evaluate NG-DBSCAN by comparing its results with those

obtained through the exact DBSCAN algorithm, and by compar-
ing its scalability against SPARK-DBSCAN and IRVINGC-DB-
SCAN on datasets of points in Euclidean spaces; we then show
how NG-DBSCAN performs with arbitrary data and similarity
measures, by evaluating it on text clustering.

In the following, where not otherwise mentioned, we use Eu-
clidean distance and Tn = 0.7, Tr = 0.01, k = 10, Mmax = 2k
and ρ = 3 as parameters: in Section 5.4, we provide an in-depth
evaluation of those parameters and see that they provide a good
trade-off between clustering quality and run-time.
7
https://github.com/alitouka/spark_dbscan

8
https://github.com/irvingc/dbscan-on-spark

163

Table 2: Performance in a 2D space: Clustering Quality.

NG-DBSCAN SPARK-DBSCAN IRVINGC-DBSCAN
Time (s) Recall Time (s) Recall Time (s) Recall

Twitter 1 822 0.951 N/A N/A N/A N/A
Circle 96 1 192 1 135 1
Moon 103 1 132 1 72 1
Blob 123 0.92 83 1 61 1

5.1 Performance in a 2D Space
We start our evaluation of NG-DBSCAN, and compare the clus-

tering quality we obtain to single-machine DBSCAN, and to the
SPARK-DBSCAN and IRVINGC-DBSCAN alternatives. We
use both synthetically generated datasets and the latitude and lon-
gitude values of the Twitter dataset.

5.1.1 Clustering Quality
We begin with the synthetically generated datasets (described in

Section 4.3) because they are commonly used to compare clustering
algorithms. Figure 3 presents the shape of the three datasets called
respectively Circle, Moon and Blobs. Each dataset has 100 000
items to cluster: such a small input size allows computing data
clustering using the exact SciKit DBSCAN implementation and to
make a preliminary validation of our approach. Results are pre-
sented in Table 2. NG-DBSCAN obtains nearly perfect cluster-
ing recall for all the datasets, when compared to the exact DB-
SCAN implementation. The completion time of NG-DBSCAN,
SPARK-DBSCAN and IRVINGC-DBSCAN are comparable in
such small datasets. It is interesting to note that SPARK-DB-
SCAN and IRVINGC-DBSCAN perform comparably better in
the Blob dataset, where partitioning can cover each cluster in a
different partition. Instead, in the circle and moon datasets, each
cluster covers multiple partition and this slows down the algorithm.

In the Twitter dataset, NG-DBSCAN is able to achieve a good
clustering recall, as described also in previous Sections. Instead,
SPARK-DBSCAN and IRVINGC-DBSCAN are not able to com-
plete the computation due to memory errors. In the following we
dive deeper in this respect, analyzing the impact of dataset size.

5.1.2 Scalability
We now compare the scalability of NG-DBSCAN to that of

SPARK-DBSCAN and IRVINGC-DBSCAN. Figure 4a shows
the algorithm runtime as a function of the dataset size, while us-
ing our entire compute cluster. We use 6 different samples of the
Twitter dataset of size approximately 175 000, 350 000, 700 000,
1 400 000, 2 800 000 and 5 600 000 (i.e., the entire dataset) tweets
respectively. For smaller datasets, up to roughly 1 400 000 sam-
ples, all three algorithms appear to scale roughly linearly, and IR-
VINGC-DBSCAN performs best. For larger datasets, instead, the
algorithm runtime increases considerably. In general, we note that
SPARK-DBSCAN is always slower than NG-DBSCAN, by a
factor of at least of 1.74; SPARK-DBSCAN cannot complete the
computation for the largest dataset, and with a size of 2 800 000
it is already 4.43 times slower than NG-DBSCAN. IRVINGC-
DBSCAN cannot complete the computation due to memory errors
on datasets larger than 1 400 000 elements.

Figure 4b shows the algorithm speed-up of the three algorithms
as the number of cores we devote to the computation varies between
4 and 64, considering a small dataset of 350 000 tweets and a larger
dataset of 1 400 000 tweets. Our results indicate that NG-DB-
SCAN always outperforms SPARK-DBSCAN ans IRVINGC-
DBSCAN, which cannot fully reap the benefits of more compute
nodes: we explain this with the fact that adding new cores results

(a) Circle. (b) Moon. (c) Blobs.

Figure 3: Synthetic datasets plot.

 0

 1000

 2000

 3000

1.7x105 3.5x105 7x105 1.4x106 2.8x106 5.6x106

T
im

e
(S

ec
)

Dataset Size

NG-DBSCAN
SPARK-DBSCAN

IRVINGC-DBSCAN

(a) Scalability: Dataset Size.

 0

 1

 2

 3

 4

 5

 6

 7

 4 8 16 32 48 64

S
pe

ed
-u

p

Number of cores

NG-DBSCAN Big
NG-DBSCAN Small

IRVINGC-DBSCAN Big
IRVINGC-DBSCAN Small

SPARK-DBSCAN Big
SPARK-DBSCAN Small

(b) Scalability: Number of Cores.

Figure 4: Performance in a 2D space: Scalability.

in smaller partitions, which increase the communication cost. Past
the cap of 32 cores, NG-DBSCAN’s speedup grows more slowly,
and doubling the compute cores does not double the speedup; we
attribute this to the fact that communication costs start to dominate
computation costs.

These results indicate that our approach is scalable – both as the
dataset and cluster size grows. The time needed to compute our
results is always in the order of minutes, demonstrating that our
approach is viable in several concrete scenarios.

5.2 Performance in d-Dimensional Spaces
Next, we evaluate the impact of d-dimensional datasets in terms

of clustering quality and algorithm running time. For our experi-
ments, we synthetically generate 10 different datasets, respectively
of dimensionality d ∈ {2, 3, 4, 5, 6, 8, 10, 12, 14, 16} of approxi-
mately 1 500 000 elements each. The values in each dimension are
a sample of the latitude and longitude values of the Twitter dataset.
Unlike other approaches, NG-DBSCAN can scale to datasets hav-
ing even higher dimensionality: we discuss in the following a case
of dimensionality 1 000.

Figure 5a presents the running time of both NG-DBSCAN and
SPARK-DBSCAN as a function of the dimensionality d of the
dataset (IRVINGC-DBSCAN only allows 2-dimensional points).
Results indicate that our approach is unaffected by the dimension-

164

Table 3: Spam and Tweets dataset: manual investigation.

Dataset Cluster size Sample

Spam 101 547 “[. . .]@[. . .].com Rolex For You -36%” “[. . .]@[. . .].com Rolex.com For You -53%”
“[. . .]@[. . .].com Rolex.com For You -13%”

Spam 42 315 “Refill Your Xanax No PreScript Needed!” “We have MaleSex Medications No PreScript Needed!”
“Refill Your MaleSex Medications No PreScript Needed!”

Spam 83 841 “[. . .]@[. . .].com VIAGRA Official -26%” “[. . .]@[. . .].com VIAGRA Official -83%”
“[. . .]@[. . .].com VIAGRA Official Site 57% 0FF.”

Twitter 7 017
“I just ousted @hugoquinones as the mayor of Preparatoria #2 on @foursquare! http://t.co/y5a24YMn”
“I just ousted Lisa T. as the mayor of FedEx Office Print & Ship Center on @foursquare! http://t.co/cNUjL2L5”
“I just ousted @sombrerogood as the mayor of Bus Stop #61013 on @foursquare! http://t.co/SwC3p33w”

Twitter 1 033
“#IGoToASchool where your smarter than the teachers !”
“#IGoToASchool where guys don’t shower . They just drown themselves in axe .”
“#IGoToASchool where if u seen wit a female every other female think yall go together”

Twitter 23 884
“I’m at Walmart Supercenter (2501 Walton Blvd, Warsaw) http://t.co/4Mju6hCd”
“I’m at The Spa At Griffin Gate (Lexington) http://t.co/Jb5JU8bT”
“I’m at My Bed (Chicago, Illinois) http://t.co/n9UHV2UK”

Table 4: Evaluation using text data: Twitter and Spam datasets comparison with k-MEANS. “C” stands for compactness, “S” for
separation.

Algorithm Twitter Spam Spam 25%
C S Time C S Time C S Time

NG-DBSCAN 0.65 0.2 2 980 0.88 0.63 4 178 0.88 0.66 654
k-MEANS 0.64 0.42 4 477 N/A N/A N/A 0.84 0.67 27 557

ality of the dataset: algorithm runtime remains similar, indepen-
dently of d. Instead, for the reasons highlighted in Section 1, the
running time of SPARK-DBSCAN significantly increases as the
dimensionality grows: in particular, SPARK-DBSCAN does not
complete for datasets in which d > 6. Even for small d, however,
NG-DBSCAN significantly outperforms SPARK-DBSCAN.

Figure 5b shows the clustering recall as a function of d. Cluster-
ing quality is not affected by high dimensionality, albeit SPARK-
DBSCAN does not complete for d > 6. The clustering recall of
NG-DBSCAN settles at 0.96, due its approximate nature.

To evaluate NG-DBSCAN on even larger dimensionalities, we
generate a dataset of 100 000 strings taken from the Twitter dataset,
and use word2vec to embed them in a space having 1 000 dimen-
sions. Even in this case, NG-DBSCAN achieves a recall of 0.96
with a running time of 640 seconds, which is comparable to what
is obtained on datasets having lower dimensionality.

In conclusion, NG-DBSCAN performs well irrespectively of
the dimensionality of the datasets both in terms of runtime and clus-
tering quality. This is a distinguishing feature of our approach, and
is in stark contrast with respect to algorithms constructed to parti-
tion the data space, such as SPARK-DBSCAN and the majority of
the state of the art approaches (see Table 1 in Section 2), for which
the runtime worsens exponentially with the dataset dimensionality.

5.3 Performance with Text Data
We continue our analysis of NG-DBSCAN by evaluating its ef-

fectiveness when using arbitrary similarity measures. In particular,
we perform the evaluation using text data by means of two datasets:
the textual values of the Twitter dataset, and a collection of spam
email subjects collected by Symantec. As distance metric, we use
the Jaro-Winkler edit distance.

5.3.1 Comparison with k-MEANS

Since alternative DBSCAN implementations do not support Jaro-
Winkler distance (or any other kind of edit distance), we compare

 0

 1000

 2000

 3000

 4000

 5000

 6000

 2 4 6 8 10 12 14 16

T
im

e
(S

ec
)

Number of dimensions

NG-DBSCAN
SPARK-DBSCAN

(a) Time.

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 2 4 6 8 10 12 14 16

C
lu

st
er

in
g

R
ec

al
l

Number of dimensions

NG-DBSCAN
SPARK-DBSCAN

(b) Clustering Recall.

Figure 5: Performance in a d-dimensional space.

our results with those obtained using k-MEANS on text data con-
verted into vectors using word2vec using the default dimension-
ality of 100, as described in Section 4.4. To proceed with a fair
comparison, we first run NG-DBSCAN and use the number of
clusters output by our approach to set the parameter K of k-MEANS.
We recall that other DBSCAN implementations are not viable in
this case, since neither a string data tipe nor the large dimensional-
ity of word2vec vectors can be handled by them (see Section 5.2).

We begin with a manual inspection of the clusters returned by
NG-DBSCAN: results are shown in Table 3. We report 3 clusters
for each dataset, along with a sample of the clustered data. Note
that subjects or tweets are all related, albeit not identical. Clusters,
in particular in case of the Spam dataset, are quite big. This is of
paramount importance because specialists usually prefer to analyse
large clusters with respect to small clusters. For instance, we ob-
tain a cluster of 42 315 emails related to selling medicines without
prescription, and a cluster of 23 884 tweets aggregating text data of
people communicating where they are through Foursquare.

Next, we compare NG-DBSCAN with k-MEANS using the well-
known internal clustering validation metrics we introduced in Sec-
tion 4.2, basing them on Jaro-Winkler edit distance. Recall that

165

Table 5: Distance function comparison for Twitter.

distance #clusters max size C S Time
Jaro-Winkler 1 605 58 973 0.65 0.2 2 980
word2vec +
cosine 3 238 24 117 0.64 0.29 2 908

compactness (C) measures how closely related the items in a clus-
ter are, whereas separation (S) measures how well clusters are sep-
arated from each other. We perform several experiments with both
Twitter and Spam datasets: Table 4 summarizes our results.

For what concerns compactness, higher values are better and
both NG-DBSCAN and k-MEANS behave similarly. However, in
the full Spam dataset, we are unable to complete the computation
of k-MEANS: indeed, the k-MEANS running time is highly affected
by its parameter K. In this scenario we have K = 17 704 and
the k-MEANS computation does not terminate after more than 10
hours. Hence, we down-sample the Spam dataset to 25% of its
original size (we have the very same issues with a sample size of
the 50%). With such a reduced dataset, we obtain K = 3 375
and k-MEANS manages to complete, although its running time is
considerably longer than that of NG-DBSCAN. The quality of the
clusters produced by the two algorithms are very similar.

For the separation metric, where lower values are better, NG-
DBSCAN clearly outperforms k-MEANS. In particular in the Twit-
ter dataset we achieve 0.2 instead of 0.42 suggesting that the clus-
ters are more separated in NG-DBSCAN with respect to k-MEANS.

5.3.2 Impact of Text Embedding
NG-DBSCAN offers the peculiar feature of allowing arbitrary

data and custom distance functions: we used it in the previous ex-
periment to show that our algorithm, running directly on the origi-
nal data, can perform better than existing algorithms which embed
strings in vectors on which the clustering algorithm is run. Here, we
perform an experiment aimed at evaluating this feature, comparing
NG-DBSCAN running on raw text, using Jaro-Winkler distance,
against the same algorithm running on the vectors obtained through
the word2vec embedding.

Table 5 presents the results on the Twitter dataset. They indicate
that, indeed, transforming text to a vector representation induces a
clustering quality loss, when quality is defined using compactness
and separation according to the Jaro-Winkler distance measure: the
cluster separation is worse, and clusters are more fragmented (i.e.,
more clusters of smaller size) when NG-DBSCAN uses the tradi-
tional word2vec embedding. This result emphasizes a key feature
of NG-DBSCAN: it allows working with arbitrary data; the oppor-
tunity of tailoring distance metrics to the data allows obtaining, as
a result, clusters with better quality.

5.4 Analysis of the Parameter Space
NG-DBSCAN has the following parameters: i) Tn and Tr ,

which regulate the termination mechanism; ii) k, the number of
neighbors per node in the neighbor graph; iii) Mmax , the threshold
of neighbors in the ε-graph to remove nodes from the neighbor
graph; iv) ρ, which limits the number of comparisons in extreme
cases during Phase 1; v) S, which limits the memory requirements
by dividing logical iterations in several physical sub-iterations, with
less nodes involved in the computation.

5.4.1 Termination Mechanism
We start by analyzing the termination mechanism; we use here

the Twitter dataset (latitude and longitude values). Figure 6 shows

0x100

1x106

2x106

3x106

4x106

5x106

6x106

 0 5 10 15 20 25 30 35 40 45 50
 0

 0.2

 0.4

 0.6

 0.8

 1

N
od

e
nu

m
be

r

C
lu

st
er

in
g

R
ec

al
l

Iteration number

Tn=0.7

Tn=0.7 and Tr=0.01

Active
Recall

Removed
Removed (Tot)

Figure 6: Analysis of the termination mechanism.

the number of active (Active) and removed (Removed Tot) nodes,
and the removal rate (Removed) in subsequent iterations of the
NG-DBSCAN algorithm. To help understanding the analysis, we
include in the Figure also the clustering recall that we compute in
every iteration of the algorithm. The results we present are obtained
using k = 10 and Mmax = 20; analogous results can be obtained
with different configurations.

In the first 10 iterations, the number nodes in the neighbor graph
remains roughly constant; this is the time required to start finding
useful edges. Then, the number of active nodes rapidly decreases,
indicating that a large fraction of the nodes reach convergence.
Towards the last iterations, the number of active nodes reaches a
plateau due to noise points.

As discussed in Section 3.2.1, the Tn threshold, which indi-
cates the number of active nodes required terminating the algo-
rithm, avoids premature terminations that might occur if we only
used the Tr threshold and the corresponding inequality. Instead,
the Tr parameter, which measures the rate at which nodes are de-
activated in subsequent iterations, avoids both premature termina-
tions and lengthy and marginally beneficial convergence processes.

In particular, without the Tr threshold, the algorithm would stop
at the Tn threshold, that is – in our experiment – at iteration 18. As
the recall metric of roughly 0.5 indicates, stopping the algorithm
too early results in poor performance. Instead, with both thresh-
olds, the algorithm stops at iteration 33, where the recall is greater
than 0.9. Subsequent iterations only marginally improve the recall.

5.4.2 How to Set k
We now consider the k parameter, which affects the number of

neighbours in the neighbor graph, and perform clustering of the
Twitter dataset (latitude and longitude values).

Figure 7a depicts the clustering recall we obtained with k ∈
{5, 10, 15}, as a function of the algorithm running time. Clearly
k = 5 is not enough to obtain a good result, which confirms the
findings of previous works on k-NN graphs [8, 20]. However, al-
ready with k = 10, the recall is considerably high, indicating that
we retrieve approximately the same clusters as the exact DBSCAN
algorithm. Increasing this parameter improves the quality of the re-
sult only marginally at the cost of a larger amount of algorithm run-
times. With a standard deviation lower than 1% on recall between
different algorithm runs, the quality of results remains stable; run-
ning time has a standard deviation of the order of 6%. Due to the

166

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1400 1500 1600 1700 1800 1900 2000 2100

C
lu

st
er

in
g

R
ec

al
l

Time (s)

k = 5
k = 10
k = 15

(a) How to set k.

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 1400 1600 1800 2000 2200 2400 2600 2800 3000

C
lu

st
er

in
g

R
ec

al
l

Time (s)

Mmax = 5
Mmax = 10
Mmax = 15
Mmax = 20
Mmax = 30

(b) How to set Mmax .

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600

R
ec

al
l

Time (s)

Sub-Iteration
Macro-Iteration

(c) Analysis of sub-iterations and parameter S.

Figure 7: Analysis of the Parameter Space.

Table 6: How to set ρ.

ρ 1 2 3 6
Time (s) 3 985 2 303 2 233 2 241
Recall 0.089 0.95 0.944 0.951
Sub-Iterations 80 37 33 33

above considerations we think that k = 10 is an acceptable config-
uration value.

5.4.3 How to Set Mmax

We analyse the impact of the Mmax parameter using the Twitter
dataset, and set k = 10. Results with different values of k lead
to analogous observations. Figure 7b shows the clustering recall
achieved for values of Mmax ∈ {5, 10, 15, 20, 30}, as a function
of the algorithm running time.

The recall achieved by NG-DBSCAN is always larger than 0.9
when the algorithm terminates. Increasing Mmax has positive ef-
fects on the recall: this confirms that a larger Mmax improves
the connectivity of the ε-graph in dense regions. However, there
are “diminishing returns” when increasing Mmax : a larger Mmax

value requires more time to meet the termination conditions be-
cause more edges must be collected at each node.

Overall, our empirical remarks indicate that Mmax can be kept
similar to k. In particular, values of Mmax ∈ [10, 20] = [k, 2k]
give the better trade-offs between recall and completion time. Also
in this case, the standard deviations in terms of recall and time are
respectively smaller than 1% and 6%.

5.4.4 How to set ρ
The ρ parameter sets a limit to the number of nodes examined in

the neighborhood of each node: if this is not done, in degenerate
cases where nodes have a massive degree in the neighbor graph,
the worst-case complexity of the first step of NG-DBSCAN could
grow up to O

(
n2

)
. We have found, however, that our mechanism

to remove nodes from the neighbor graph in practice already avoids
the case in our experiments.

In Table 6 we show results for values of ρ ∈ {1, 2, 3, 6}. With
a value of ρ = 1, the bound on the size of neighborhoods ex-
plored is too stringent, and NG-DBSCAN cannot explore new
nodes quickly enough; as ρ grows, the algorithm performs better
in terms of both recall and runtime.

We set a default value of ρ = 3 to ensure that algorithm termi-
nates fast with good quality, while avoiding an increase in compu-
tational complexity for degenerate cases.

5.4.5 Sub-Iterations and S
Figure 7c shows the amount of time to complete a sub-iteration

and a macro-iteration as described in Section 3.2.2. As a reminder,
the parameter S imposes a limit on the number of computing nodes
in a given iteration. In this example run, we set S = 500 000 for
the Twitter dataset of 5 602 349 tweets; this means that each sub-
iteration involves approximately 500 000 nodes. The number of
needed sub-iterations to complete the first macro-iteration should
be d5 602 349/500 000e = 12, but only 11 sub-iterations are ac-
tually necessary because some nodes already get deactivated in the
first sub-iterations. As nodes get deactivated, macro-iterations be-
come less and less expensive, requiring less sub-iterations and less
time to complete. Since sub-iterations operate on approximately
the same number of nodes, they keep a roughly constant size.

5.5 Discussion
We have provided a set of NG-DBSCAN parameters that con-

sistently result in a desireable trade-off between speed and quality
of the results (Section 5.4); we have found that, using these parame-
ters, NG-DBSCAN scales better than other DBSCAN distributed
implementations (Section 5.1); its qualities shine in datasets having
large and very large dimensionalities (Section 5.2). In Section 5.3,
we have seen that the ability of working with arbitrary data and us-
ing custom distance functions can enable higher-quality clustering
than in existing approaches.

We summarize our experimental findings by concluding that NG-
DBSCAN allows performing density-based clustering, approxi-
mating DBSCAN well and efficiently, even in the case of big and
high-dimensional or arbitrary data, which was not handled satisfac-
torily by existing DBSCAN implementations.

6. CONCLUSION
We presented NG-DBSCAN, a novel distributed algorithm for

density-based clustering that produces quality clusters with arbi-
trary distance measures. This is of paramount importance because
it allows separation of concerns: domain experts can chose the sim-
ilarity function that is most appropriate for their data, given their
knowledge of the context; instead, the intricacies of parallelism can
be addressed by designers who are more familiar with framework
APIs than with the peculiar data at hand.

We showed, through a detailed experimental campaign, that our
approximate algorithm is on-par with the original DBSCAN algo-
rithm, in terms of clustering results, for d-dimensional data. How-
ever, NG-DBSCAN scales to very large datasets, outperforming
alternative designs. In addition, we showed that NG-DBSCAN

167

correctly groups text data, using a carefully chosen similarity met-
ric, outperforming a traditional approach based on the k-MEANS
algorithm. We supported our claims using both synthetically gen-
erated data and real data: a collection of real emails classified as
spam by Symantec security systems, and used to discover spam
campaigns; and a large number of tweets collected in the USA,
which we used to discover tweet similarity.

Our next steps include the analysis of the asymptotic behaviour
of the first step of NG-DBSCAN and its convergence time. We
also plan to devise an extension to NG-DBSCAN to adjust the
parameter k in a dynamic manner, by “learning” appropriate values
while processing data for clustering. In addition, we will consider
the problem of working on “unbounded data”, which requires the
design of on-line, streaming algorithms, as well as the problem of
answering ε-queries in real time.

7. ACKNOWLEDGMENTS
Pietro Michiardi was partially founded by the IOSTACK project,

H2020-644182.

8. REFERENCES
[1] Apache Giraph. http://giraph.apache.org/.
[2] Apache Spark. https://spark.apache.org.
[3] Apache Spark machine learning library.

https://spark.apache.org/mllib/.
[4] Clustering the News with Spark and MLLib.

http://bigdatasciencebootcamp.com/posts/
Part_3/clustering_news.html.

[5] Word2vector package.
https://code.google.com/p/word2vec/.

[6] B.-R. Dai et al. Efficient map/reduce-based dbscan algorithm
with optimized data partition. In Cloud Computing, IEEE 5th
International Conference on, pages 59–66. IEEE, 2012.

[7] B. Desgraupes. Clustering indices. In University of Paris
Ouest-Lab ModalX, volume 1, page 34, 2013.

[8] W. Dong et al. Efficient k-nearest neighbor graph
construction for generic similarity measures. In Proceedings
of the 20th international conference on World wide web,
pages 577–586. ACM, 2011.

[9] M. Ester et al. A density-based algorithm for discovering
clusters in large spatial databases with noise. In Kdd,
volume 96, pages 226–231, 1996.

[10] T. Falkowski et al. Dengraph: A density-based community
detection algorithm. In Web Intelligence, IEEE/WIC/ACM
International Conference on, pages 112–115. IEEE, 2007.

[11] M. Filippone. Dealing with non-metric dissimilarities in
fuzzy central clustering algorithms. International Journal of
Approximate Reasoning, 50(2):363–384, 2009.

[12] J. Gan and Y. Tao. Dbscan revisited: mis-claim, un-fixability,
and approximation. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data,
pages 519–530. ACM, 2015.

[13] J. E. Gonzalez et al. Graphx: Graph processing in a
distributed dataflow framework. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
14), pages 599–613, 2014.

[14] Y. He et al. Mr-dbscan: an efficient parallel density-based
clustering algorithm using mapreduce. In Parallel and
Distributed Systems (ICPADS), 2011 IEEE 17th
International Conference on, pages 473–480. IEEE, 2011.

[15] M. A. Jaro. Probabilistic linkage of large public health data
files. Statistics in medicine, 14(5-7):491–498, 1995.

[16] Y. Kim, K. Shim, M.-S. Kim, and J. S. Lee. Dbcure-mr: an
efficient density-based clustering algorithm for large data
using mapreduce. Information Systems, 42:15–35, 2014.

[17] H. Kwak et al. What is twitter, a social network or a news
media? In Proceedings of the 19th international conference
on World wide web, pages 591–600. ACM, 2010.

[18] Y. Liu, Z. Li, H. Xiong, X. Gao, and J. Wu. Understanding of
internal clustering validation measures. In ICDM, pages
911–916. IEEE, 2010.

[19] A. Lulli, E. Carlini, P. Dazzi, C. Lucchese, and L. Ricci. Fast
connected components computation in large graphs by vertex
pruning. IEEE Transactions on Parallel and Distributed
systems, page 1, 2016.

[20] A. Lulli, T. Debatty, M. Dell’Amico, P. Michiardi, and
L. Ricci. Scalable k-nn based text clustering. In Big Data
(Big Data), 2015 IEEE International Conference on, pages
958–963. IEEE, 2015.

[21] A. Lulli, L. Ricci, E. Carlini, P. Dazzi, and C. Lucchese.
Cracker: Crumbling large graphs into connected
components. In 2015 IEEE Symposium on Computers and
Communication (ISCC), pages 574–581. IEEE, 2015.

[22] G. Malewicz et al. Pregel: a system for large-scale graph
processing. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, pages
135–146. ACM, 2010.

[23] R. R. McCune et al. Thinking like a vertex: a survey of
vertex-centric frameworks for large-scale distributed graph
processing. ACM Computing Surveys (CSUR), 48(2):25,
2015.

[24] F. McSherry et al. Scalability! but at what cost? In 15th
Workshop on Hot Topics in Operating Systems, 2015.

[25] M. M. A. Patwary et al. Pardicle: parallel approximate
density-based clustering. In Proceedings of the International
Conference for High Performance Computing, Networking,
Storage and Analysis, pages 560–571. IEEE Press, 2014.

[26] F. Pedregosa et al. Scikit-learn: Machine learning in python.
Journal of Machine Learning Research, 12(Oct):2825–2830,
2011.

[27] L. M. Rocha, F. A. Cappabianco, and A. X. Falcão. Data
clustering as an optimum-path forest problem with
applications in image analysis. International Journal of
Imaging Systems and Technology, 19(2):50–68, 2009.

[28] T. N. Tran et al. Knn-kernel density-based clustering for
high-dimensional multivariate data. Computational Statistics
& Data Analysis, 51(2):513–525, 2006.

[29] L. G. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33(8):103–111, 1990.

[30] B. Welton et al. Mr. scan: Extreme scale density-based
clustering using a tree-based network of gpgpu nodes. In
Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis,
page 84. ACM, 2013.

[31] X. Xu, J. Jäger, and H.-P. Kriegel. A fast parallel clustering
algorithm for large spatial databases. In High Performance
Data Mining, pages 263–290. Springer, 1999.

[32] S. Zhou et al. A neighborhood-based clustering algorithm. In
Pacific-Asia Conference on Knowledge Discovery and Data
Mining, pages 361–371. 2005.

168

