
Improving the QoE in Personal Clouds with
Cross-Swarm Bundling

Rahma Chaabouni∗, Marc Sánchez-Artigas∗, Ala Chaabouni‡∗ and Pedro Garcı́a-López∗
∗Universitat Rovira i Virgili, Tarragona (Spain)

{rahma.chaabouni|marc.sanchez|pedro.garcia}@urv.cat
‡National School of Engineers of Sfax, University of Sfax, Sfax (Tunisia)

alaa.chaabouni@enis.tn

Abstract—Personal cloud storage systems, like Dropbox, are
revolutionizing the way people think about and access their files.
As the prevailing model, these systems use unicast to push file
changes to each of the “unsynced” devices. And as a result, they
transmit multiple times the same information, once per unsynced
device. This puts an unnecessary strain on outgoing bandwidth at
the datacenters. One way to address this is to leverage P2P-like
content distribution to benefit from user resources at the edges
of the Internet.

Although protocols like BitTorrent have proven to be effective
in this scenario, we go a step further in this work and propose
cross-swarm bundling as a mechanism for file distribution. One
key contribution of this work is that, instead of using bundling
as means to extend the lifetime of swarms, we show that it can be
useful to improve the Quality of Experience (QoE). We validate
our proposal using a trace of Ubuntu One, a real personal cloud
system, obtaining significant improvements on the QoE levels.

Index Terms—Personal Clouds, QoE, Cross-swarm bundling,
BitTorrent

I. INTRODUCTION

Cloud storage services such as Dropbox, Box and Google

Drive have become increasingly popular. These services, also

referred to as Personal Clouds, offer three key services to

users: Storage, Synchronization and Sharing, the 3S defini-

tion [10]. Because of their prominent role in the Internet, there

has been a surge of research on the benchmark and design of

these systems [6], [5], [11], [18], [19].

For file synchronization and sharing (see Fig.1), the de
facto standard to distribute files, “deltas” or “diffs”, to each

of the out-of-sync devices is HTTP unicast. From a network

perspective, this means that the same content is sent multiple

times, once per device, putting an unnecessary strain on the

instantaneous outgoing bandwidth at datacenters. In practice,

this may translate into a loss of Quality of Service (QoS) when

the number of parallel transmissions is high, in particular, at

peak hours.

One way to address this issue is to leverage P2P-like content

distribution to benefit from user resources at the edges of the

Internet. In this sense, our previous works [2] and [3] have

proven BitTorrent [4] to be effective in decreasing outbound

traffic, despite the small size of data flows [12] and swarms [2].

By benefiting from the mutual need of devices to synchronize,

[2] and [3] exploited their aggregate upload bandwidth to
offload the cloud from doing all the serving.

������� ���������	
���	��
�
�������

(a) Synchronization

�������

���������
����������	
���	��
�
�������

������� �������

(b) Sharing

Fig. 1: Synchronization and sharing in personal cloud systems

In this research, we focus on a new dimension, the Quality

of Experience (QoE), and set as our main goal the reduction of

the delay experienced by devices to get the necessary files and

deltas to be “in sync” again. To achieve this goal, BitTorrent

per se may be not sufficient, as the total number of unsynced

devices per file is generally small [2], which poses a limit on

the maximum attainable benefits.

A good solution to this problem is to “inflate” the swarms

by grouping a set of diverse contents into a single .torrent
file. This is known as bundling in BitTorrent parlance, and was

originally proposed to mitigate the problem of availability in

unpopular torrents [20], [14]. In personal clouds, low content

availability is not an issue, as the cloud is always available to

serve the files.

However, cross-swarm bundling can have a positive effect

on the QoE in personal clouds, and clouds in general. As far

as we know, we are the first to provide evidence that bundling

can be useful to diminish the download time, even in a very

adverse scenario such as personal clouds, where most of files

are small. More specific to our problem is the investigation of

the benefits of inflating swarms with HTTP users or even of

the merge of two HTTP users to create a BitTorrent swarm. We

also study the efficiency of cross-swarm bundling in personal

clouds through an average case analysis and identify the cases

where it is positive. Furthermore, we show how to implement

bundling in personal clouds. Finally, we validate our proposal

using a real trace of the Ubuntu One system [12] and compare

the different approaches that can be deployed to deliver content

from the cloud to end users. Our results demonstrate that when

the load is high, bundling can improve significantly the QoE

of users without increasing the datacenter bandwidth.

The remainder of the paper is organized as follows: First we

2016 IEEE 41st Conference on Local Computer Networks

© 2016, Rahma Chaabouni. Under license to IEEE. 424

2016 IEEE 41st Conference on Local Computer Networks

© 2016, Rahma Chaabouni. Under license to IEEE.

DOI 10.1109/LCN.2016.71

424

2016 IEEE 41st Conference on Local Computer Networks

© 2016, Rahma Chaabouni. Under license to IEEE.

DOI 10.1109/LCN.2016.71

424

discuss related work in Section II. In Section III, we describe

briefly the architecture of personal clouds and state the QoE

problem. In Sections IV and V, we present our cross-swarm

bundling model along with an average case analysis on the

efficiency of bundling in personal clouds. Section VI presents

the implementation details of bundling in personal clouds. We

validate our proposal, present and discuss the results in Section

VII. Finally, Section VIII concludes the paper and presents our

future plans.

II. RELATED WORK

The idea of using BitTorrent in personal clouds was intro-

duced with the objective of reducing the load on the cloud

[1]. It was proposed to transparently switch from HTTP to

BitTorrent upon detection of a certain critical mass demand

on a specific content. A threshold was statically placed on

the number of users requesting the same file, and the system

had to test with each new request whether the current number

of requesters of the corresponding file passes the predefined

threshold or not. The download time and offload ratio in

BitTorrent compared to HTTP were studied in [2], and a

dynamic algorithm for the management of these protocols was

proposed [3]. The choice of the protocol was made based on

the prediction of the efficiency of BitTorrent and HTTP for

each case. The main goal of [1], [2], [3] was to reduce the

bandwidth consumption in the cloud. Nevertheless, the number

of simultaneous downloads of the same content remains very

limited in personal clouds. This is due to the fact that a

large population of the clients use these services for backup.

In this paper, we leverage the clients resources at maximum

by enabling cooperation between peers of different swarms

through cross-swarm bundling.

Bundling in BitTorrent systems has gained the attention of

researchers as it has been reported to increase the availability

of unpopular files. In this context, the authors in [20] per-

formed a measurement study on real BitTorrent swarms which

showed that availability is a serious issue. They proposed a

model to quantify content availability in swarming systems

and used it to analyze the implications of bundling. Their

results proved the efficiency of this technique in improving the

availability of unpopular torrents and reducing the download

times when publishers are unavailable. However, no related

work focused on the effect of bundling on the QoE when

availability is not an issue (which is the case in personal

clouds).

Zhan et al. presented in [22], [21] a good motivation section

on the importance of bundling. They propose the design, proof-

of-concept and implementation of a dynamic file bundling

system. Han et al. performed a large scale measurement study

on the prevalence of file bundling in the BitTorrent ecosystem

[15], [16]. They noticed that over 70% of the monitored

torrents contain multiple files which proves that bundling is

very common. However, this type of measurement is only

related to static bundling when all the files are grouped initially

by the publisher.

The concept of bundling in personal clouds is different from

the one in swarming systems. As a matter of fact, bundling

in personal clouds consists in grouping the files that need to

be transferred to the same user into a single one, such that

both transmission latency and control overhead are reduced.

Drago et al. [6], [5] compared the performance of 5 popular

personal clouds and noticed that, among the personal clouds

in their study, only Dropbox implements a bundling strategy.

However, their measurement study lacks more details about

the concrete implementation details and the bundling policies

in Dropbox.

III. PROBLEM STATEMENT: QOE IN PERSONAL CLOUDS

Personal Cloud is a term generally used to refer to a file

hosting service that allows its users to store, synchronize and

share content over the Internet. When a user adds a new file to

his personal space in the cloud, all his out-of-sync devices will

be notified to download this new content in a unicast form.

During peak hours when the number of download requests is

high, this approach can lead to overloading the cloud, thus

increasing the download times for the clients. To overcome

these issues, the cloud can benefit from the clients’ upload

capacities. This can be done by using BitTorrent to distribute

the files that are shared between a set of devices.

The use of BitTorrent in personal clouds implies grouping

devices into swarms. We define a swarm by the set of devices

(called also clients or peers) that are requesting the same file.

We differentiate between two types of swarms: HTTP swarms
and BitTorrent swarms, based on the download protocol used.

If a file is being downloaded by a single peer, we consider it

as a single-peer swarm.

In this paper, we aim at improving the QoE for the clients
without increasing the cloud’s bandwidth consumption. The

QoE, also known as the perceived quality of service, mea-

sures the user’s satisfaction with the provided service. Several

parameters can interfere in evaluating the QoE. In this paper,

we focus on the download time observed by the clients. For

each request, we compare the download times measured using

HTTP only and using bundling. The approach that entails less

download time is the one that offers a better QoE.

We denote by ΔQoE the difference (in seconds) between

the download time experienced by a given user downloading a

filef with HTTP only and the download time experienced by

the same user downloading the same file after being bundled

with another swarm. A positive value of ΔQoE reflects an

improvement in download time compared to the use of HTTP

only, while a negative ΔQoE means that the use of bundling

has affected negatively the download time and made it longer.

ΔQoE = 0 when there is no change in the download times.

Goal. The aim of this paper is to maximize ΔQoE for users,

which requires an answer to the questions of how to decide
which swarms should be grouped together among the large
set of swarms, and which are the criteria for making such a
decision? .

425425425

TABLE I: Table of notation

Symbol Meaning

s a swarm: a collection of peers downloading the same file fs.

fs the file being downloaded by the peers in s.

Fs size of the file fs.

ws amount of cloud bandwidth allocated to s.

Ls number of peers in s.

dmin,s the download speed of the slowest peer in s.

us the average upload speed of the peers in s.

ηs the effectiveness of file sharing1. ηs ∈ [0, 1] where 1
means maximum effectiveness while 0 reflects the absence
of collaboration between peers.

αbt the overhead related to the start-up phase in BitTorrent
transfers1.

thttps the expected end download time for the peers in s when HTTP
is the download protocol.

tbts the expected end download time for the peers in s when
BitTorrent is the download protocol.

IV. CROSS-SWARM BUNDLING MODEL

In this section, we describe our cross-bundling model. We

also present some mathematical background to estimate the

expected end download time for a given swarm.

A. Background: The expected end download time

In this section, we reuse the equations proposed in [2],

which predict the expected end download time for a given

swarm s based on the adopted download protocol. The com-

plete notation list is available in Table I.

thttps =
Fs

min

{
dmin,s,

ws

Ls

} . (1)

tbts =
Fs

min

{
dmin,s,

ws + ηs us Ls

Ls
, ws

} + αbt. (2)

(1) measures thttps , the expected end download time for a

swarm s using HTTP as a download protocol. thttps is limited

by the bandwidth bottleneck of the transfer. This bottleneck

can be either the download speed of the slowest peer in the

swarm or the share of cloud upload bandwidth allocated to

each peer. (2) measures tbts , the expected end download time

if the peers in s are using BitTorrent as a download protocol.

This equation1 comes from a fluid model proposed first by

Kumar et al. in [17] and extended later in [2]. tbts is limited

by the download speed of the slowest peer, or the rate at which

“fresh” data can be sent to the different peers. This rate can be

equal to the upload speed of the seed or the aggregate upload

of the system divided between all the peers.

1For further information about the formulas and the related parameters, we
kindly refer the reader to [2].

fsj

wsj

sj

wsi

si

Bundling

fsi
wsi+wsj

si+ sj

fsj fsi

Fig. 2: Bundling scenario

B. Cross-swarm bundling model

In this paper, we introduce cross-swarm bundling as the

process of merging two swarms, say si and sj , together into

a single swarm si + sj (see Fig.2). The files fsi and fsj are

grouped into one file fsi + fsj whose size is equal to the sum

Fsi + Fsj . fsi + fsj is sent via BitTorrent to the resulting

swarm which contains all the peers from both si and sj . Once

a client of a bundled swarm finishes downloading the original

file and the required contribution, he can leave the swarm. The

share of cloud bandwidth allocated to the bundle is equal to

the sum of the shares allocated to each swarm individually

before bundling.

To evaluate the efficiency of bundling on si and sj , we

compare the download times before and after bundling. We

denote by tbeforesi and tbeforesj the expected end download times

for si and sj respectively, before the application of bundling.

tbeforesi (resp. tbeforesj) depends on the protocol being used by

si (resp. sj). For example, if the peers in si are using HTTP,

then tbeforesi = thttpsi and it is calculated using (1). Otherwise,

when the download protocol is BitTorrent, tbeforesi = tbtsi as in

(2). The same applies for sj .

To this extent, we distinguish between three bundling vari-

ants, depending on the download protocol adopted by the

grouped swarms: (i) HTTP-swarm bundling: when a HTTP

swarm is grouped with another HTTP swarm, (ii) BitTorrent-
swarm bundling: when a BitTorrent swarm is bundled with

another BitTorrent swarm, and (iii) Hybrid-swarm bundling:

when a HTTP swarm is bundled with a BitTorrent swarm.

taftersi,sj is the expected end download time after the swarms

are bundled. It is estimated using (2) since the download

protocol adopted by the bundled swarms is always BitTorrent.

The file size considered to calculate taftersi,sj is Fsi + Fsj ,

where Fsi and Fsj are the amount of data that need to be

downloaded for swarms si and sj respectively. The cloud

outgoing bandwidth allocated to the bundle is wsi + wsj , ı.e.

the aggregation of the bandwidth that were allocated to each

swarm separately.

426426426

V. AVERAGE CASE ANALYSIS: BUNDLING IN PERSONAL

CLOUDS

From a personal cloud perspective, it is important to evalu-

ate the efficiency of bundling before implementing a bundling

mechanism. In this section, we focus on the case of bundling

two HTTP swarms, the most common one in personal clouds.

We propose the following notation related to the average

characteristics of a swarm in the system:

• L̄: average size of a swarm,

• w̄: average cloud upload bandwidth allocated to a swarm,

• F̄ : average file size,

• d̄min: minimum download speed of the clients in an

average swarm,

• ū: average upload speed of the clients in a swarm,

• η̄: average value of the efficiency of file sharing,

• t̄before : average download time before bundling,

• t̄after : average download time after bundling.

Using this notation, we can estimate t̄before and t̄after , using

(1) and (2), as follows:

t̄before =
F̄

min
{
d̄min,

w̄

L̄

} . (3)

t̄after =
2F̄

min

{
d̄min,

w̄ + η̄L̄ū

L̄
, 2w̄

} . (4)

To compare both approaches, the service provider has

to identify the bottleneck limiting the transfer of the files

from the storage nodes to the end users. Using (3) and

(4), we study all the possible values of min
{
d̄min,

w̄
L̄

}
and

min
{
d̄min,

w̄+η̄L̄ū
L̄

, 2w̄
}

and then compare t̄before and t̄after

for each possible case of the bottleneck, as follows:

1) Case 1: d̄min ≤ w̄
L̄

and d̄min ≤ min
{

w̄+η̄L̄ū
L̄

, 2w̄
}

.

When the transfer bottleneck is the download speed of
the peers, bundling is not efficient.

Proof:
• d̄min ≤ w̄

L̄
⇒ t̄before = F̄

d̄min

• d̄min ≤ min
{

w̄+η̄L̄ū
L̄

, 2w̄
}
⇒ t̄after = 2F̄

d̄min

Since F̄ > 0 and d̄min > 0⇒ t̄after > t̄before .

2) Case 2: w̄
L̄

< d̄min and 2w̄ ≤ min
{
d̄min,

w̄+η̄L̄ū
L̄

}
.

When the cloud’s bandwidth is the bottleneck, bundling
can be efficient if and only if the average swarm is
composed of at least 2 peers.

Proof:
• w̄

L̄
< d̄min ⇒ t̄before = F̄ L̄

w̄

• 2w̄ ≤ min
{
d̄min,

w̄+η̄L̄ū
L̄

}
⇒ t̄after = F̄

w̄

It follows that
(
t̄before > t̄after ⇐⇒ L̄ > 1

)
.

3) Case 3: w̄
L̄

< d̄min and w̄+η̄L̄ū
L̄

≤ min
{
d̄min, 2w̄

}
.

When the upload capacity of the swarm is the bottleneck,
bundling can be efficient if and only if the swarm’s
upload capacity is higher than the cloud’s share of
bandwidth allocated to the swarm.

Proof:
• w̄

L̄
< d̄min ⇒ t̄before = F̄ L̄

w̄

• w̄+η̄L̄ū
L̄

≤ min
{
d̄min, 2w̄

}⇒ t̄after = 2F̄ L̄
w̄+η̄ L̄ ū

Thus,
(
t̄before > t̄after ⇔ η̄ L̄ ū > w̄

)
.

Summary: Based on this analysis, we can conclude that the

efficiency of cross-swarm bundling in personal clouds depends

on the transfer bottleneck. When the cloud has plenty of

bandwidth to satisfy the demands of the clients, it is not worth

bundling. However, when the outgoing bandwidth allocated to

the personal cloud application is scarce, cross-swarm bundling

presents a potential solution to reduce the download time for

the clients.

VI. IMPLEMENTING BUNDLING IN PERSONAL CLOUDS

In this section, we propose a mechanism to implement

cross-swarm bundling in personal clouds. We start by calculat-

ing the gain in download time that will result from bundling.

This gain represents the metric on which the bundling decision

will be made. Later, we present a methodology to select the

pairs of swarm to bundle based on graph matching techniques.

A. Bundling metric: The expected gain in download time

The number of requests managed by the personal cloud

can be relatively high especially at peak hours. This means

that there are numerous bundling choices among the different

swarms of clients. This makes the task of choosing the pairs2

of swarms to be bundled a challenging one. Since the goal

of this paper is to improve the QoE, we consider a bundling

strategy based on the expected gain in download time that

the peers in a given swarm si will experience if si is bundled

with another swarm sj . The idea is to estimate for each pair of

swarms the expected gain in download time and based on the

obtained values, group the pairs that would benefit the most.

gainsi(sj) measures the gain/loss that si would experience

if it is bundled with sj . This gain can be defined as the

normalized ratio of the difference between the expected end

download times before and after bundling, as follows:

gainsi(sj) =
tbeforesi − taftersi,sj

tbeforesi

. (5)

tbeforesi and taftersi,sj are calculated using (1) and (2), as

explained in Section IV. gainsi(sj) gives an estimation of

the gain from the perspective of the swarm si. To complete

the picture, we present in (6) gainsi,sj , which represents a

weighted aggregation of the gain ratios of both swarms si and

sj . The weights are allocated based on the number of clients

in each swarm (nsi and nsj).

gainsi,sj =
nsi gainsi(sj) + nsj gainsj (si)

nsi + nsj

. (6)

gainsi,sj is positive if the bundling will result in a notable

improvement in the download time for at least one of the

2To simplify the process of bundle selection, we only consider bundles of
two swarms.

427427427

swarms. This is the case when both swarms would gain in

download time or when the loss of one swarm is lower that

the gain of the other. gainsi,sj is negative if the bundling will

result in a notable degrade in the download time (at least for

one swarm). This is the case when both swarms would lose in

download time or when the gain of one swarm is lower than

the loss of the other. It is important to note here that the gain

is symmetric: gainsi,sj = gainsj ,si .

We consider now the set of all the swarms managed by

the cloud and we suppose there is a total of n swarms. To

evaluate the efficiency of bundling for each pair of swarms, we

calculate the matrix Gain . Each row in the matrix corresponds

to a swarm si and the columns represent the set of potential

swarms to be bundled with. Each element in Gain represents

the gain, calculated using (6). Since gainsi,sj = gainsj ,si and

as it makes no sense to bundle the same swarm with itself,

we only calculate the gains when i < j. Thus, Gain is a

strictly upper triangular matrix. Gain is the objective matrix

that contains all the expected gains (or losses) in the download

times, for all the combinations of bundles. This matrix will

serve to find the optimal set of swarms to bundle.

Gain =

⎛
⎜⎜⎜⎜⎜⎝

0 gains1,s2
gains1,s3

· · · gains1,sn
0 0 gains2,s3

· · · gains2,sn
0 0 0 · · · gains3,sn
...

...
...

. . .
...

0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

.

B. Finding the optimal solution

The number of swarms managed by the personal cloud

can be very high. This makes the task of choosing the right

combination of swarms to bundle very challenging. In fact, for

n different swarms, the total number of possible combinations

is:
(
n
2

)× (
n−2
2

)× (
n−4
2

)
. . ..

From this large set of combinations, our goal is to find

the “optimal” set of swarm pairs that maximizes the total

sum of the gains. To do so, we follow the same strategy as

Han et al. in [14]. We use the maximum weight matching
algorithm [7], [9] to select the pairs of swarms that should

be bundled together by converting the objective matrix Gain
into an undirected weighted graph G = (V,E,w), where w
is the set of weights that are associated with the edges. Each

vertex v ∈ V represents a swarm. Each edge e ∈ E connecting

two swarms (say si and sj) signals the possibility to bundle

these swarms together. The weight of the edge connecting si
and sj is equal to gainsi,sj .

In graph theory, a matching is a subset of edges such that

none of the selected edges share a common vertex. With

respect to a weighted graph, a maximum weight matching
is a matching for which the sum of the weights of the

matched edges is as large as possible. The first polynomial

time algorithm for maximum matching was proposed in 1965

by Edmonds [7] and subsequently improved by Gabow and

others [8], [9]. Currently, there are several libraries that can

find the maximum weight matchings for dense graphs in time

O(n3) (n is the number of nodes in the original graph). In our

0 5 10 15 20 25 30 35 40 45
Experiment ID

10

20

30

40

50

60

70

D
o
w
n
lo
a
d
ti
m
e
(i
n
s
e
c
o
n
d
s
)

HTTP

BitTorrent

Bundle

Fig. 3: Separate versus aggregated swarms: Measured down-

load times for small swarms (Lsi ∈ {1, 2, 3}) downloading

small files (Fsi ∈ {1, 2, 3MB}).

experimentation, we have noticed that this execution time does

not exceed a few milliseconds on a regular desktop machine.

C. Security concerns

Like most of the personal cloud systems, all the client-server

communication in our system is over HTTPS, which protects

against eavesdropping and tampering with the contents of the

communication. To ensure data confidentiality when the trans-

fer protocol is BitTorrent, we deploy a one-shot symmetric

encryption mechanism that uses unique keys to encrypt the

corresponding files.

To enforce security and privacy when the cloud decides to

bundle two swarms s1 and s2, each of the corresponding files

f1 and f2 is encrypted separately with a one-shot symmetric

key, such as a DES or AES key. We denote by k1 (resp. k2)

the key used to encrypt f1 (resp. f2). After encrypting f1
and f2, the cloud creates two metadata .torrent files. To

ensure content delivery with BitTorrent, both torrents are sent

to the peers in s1 and s2. However, the keys are only sent to

the entities authorized to get the content: k1 is only sent to

the clients in s1 and k2 is only sent to the clients in s2. The

keys and the torrent files are sent to each of the requesters via

HTTPS.

VII. VALIDATION

This section is dedicated to the validation of our bundling

strategy. We start by proving, through experimentation, that

cross-swarm bundling can reduce the download time for the

clients. We focus in our experiments on small swarms and

files which characterize personal clouds. After that, we apply

our proposed bundling strategy on a trace of a real personal

cloud system and prove that our approach can improve sig-

nificantly the QoE without increasing the cloud’s bandwidth

consumption.

428428428

F
s
1
(in MB)

1 2 3 4 5
6 7

8
9

10

F s 2
(in

M
B)

1
2
3
4
5
6
7
8
9
10

g
a
in

s
1
,s

2
(
in

%
)

5

10

15

20

25

30

HTTP-HTTP

HTTP-BT

BT-HTTP

(a) Ls1 = Ls2 = 2 peers

L
s
1

1
2

3
4 5

6 7
8

9
10

L s 2

1
2
3
4
5
6
7
8
9
10

g
a
in

s
1
,s

2
(i
n
%
)

10

20

30

40

50

60

70

HTTP-HTTP

HTTP-BT

BT-HTTP

(b) Fs1 = Fs2 = 1 MB

Fig. 4: Estimated gain in download times for different combinations of swarms.

A. Bundling can reduce the download time

The idea of bundling two different swarms in order to

improve the QoE might seem controversial at first. To quantify

the real effect of this approach, we ran experiments in a

campus scenario and compared the measured download times

of different peers with the two approaches: separate versus

aggregated swarms.

1) Experimental scenario: We prepared a set of experi-

ments3 using all the combinations of swarms of sizes between

1 and 3 peers downloading small files: 1, 2 and 3 MB. The

sizes of the swarms and the files are intentionally chosen to be

small, in order to represent the typical swarms in a personal

cloud [2], [3], [12]. We measure the download times for each

of these swarms using HTTP and BitTorrent and then, for each

combination of two swarms, we measure the download times

when they are bundled together.

For HTTP transfers, we used the HFS4: HTTP File Server

which is a file sharing server that supports bandwidth con-

trol. BitTorrent transfers are performed using the Vuze5 Java

BitTorrent client which is available under the GNU General

Public License.

2) Results: Fig.3 represents the experimental results with

all the download times measured for each experiment. We

notice that the measured download times when swarms are

bundled can be lower than with separate swarms, especially

when both swarms were using HTTP before bundling. For the

swarms which were already using BitTorrent, we notice that,

in most cases, bundling does not improve the download time.

More concretely: we take the example of two identical

swarms s1 and s2, each composed of 3 peers downloading

a 3 MB file (Experiment 45 in Fig.3). When these swarms

were downloading the files separately using HTTP (resp.

BitTorrent), the measured download times for the peers in s1
and s2 ranged from 73 to 77 seconds (resp. 36 to 44 seconds).

3The complete list of experiments and the obtained results can be found at
http://ast-deim.urv.cat/lcn16/exps lcn16.pdf

4HFS: HTTP File Server http://www.rejetto.com/hfs/
5Vuze: http://www.vuze.com/

When s1 and s2 were bundled into a swarm composed of

the same 6 peers downloading a 6 MB file, the experienced

download time were between 61.05 and 63.051 seconds. This

means that in the case of two HTTP swarms, all the peers

experienced an improvement in download time higher than

10% of the original time. However, when the swarms were

using BitTorrent, bundling has resulted in a loss in download

time of around 35%.

In addition to the improvement in download time with

HTTP swarms, we notice that the use of bundling has reduced

the amount of redundant data sent from the cloud servers. In

fact, with 2 separate HTTP swarms, the cloud servers had to

send the size of the file f1 (resp. f2) to each of the 3 peers

in both s1 (resp s2). This means that the total amount of data

sent by the cloud (without considering package losses) is equal

to 3× 3 + 3× 3 = 18 MB. When the swarms were bundled,

the measured peers’ contribution to the aggregated swarm was

of 21,328 MB, which represents nearly 60% of the total data

to be sent (36 MB = 6 peers × 6 MB file). Compared to

separate HTTP transfers, bundling reduced the load on the

personal cloud and eliminated over 18% of the redundant data

transfers from the cloud to the end users.

Fig.4 presents an overview of the combinations of swarms

to bundle that can lead to an improvement in download time.

Each swarm is defined by the number of peers and the size

of the corresponding file. In each of the subfigures in Fig.4,

we fixed one of these two parameters and evaluated the

gain values for several combinations. In each combination,

we calculated the gain using (6) for all possible download

protocol combinations. We notice that the combinations where

both swarms use HTTP before bundling lead to the highest

improvements in download times. Nevertheless, we notice that

even some HTTP-BitTorrent combinations can entail positive

values of the gain when the file sizes (Fig.4a) and the swarm

sizes (Fig.4b) get bigger.

Summary: Based on real experiments, we can confirm

that cross-swarm bundling can reduce download time in this

adverse scenario where files are small. But not only this, it

429429429

HTTP

ONLY

-0.25 -0.5 -0.75 -1 -2 -5 -∞

γ

10
-2

10
-1

10
0

10
1

10
2

10
3

D
o
w
n
lo
a
d
ti
m
e
s
(i
n
s
e
c
o
n
d
s
)

(a) W = 200 Mbps

HTTP

ONLY

-0.25 -0.5 -0.75 -1 -2 -5 -∞

γ

10
-2

10
-1

10
0

10
1

10
2

D
o
w
n
lo
a
d
ti
m
e
s
(i
n
s
e
c
o
n
d
s
)

(b) W = 250 Mbps

HTTP

ONLY

-0.25 -0.5 -0.75 -1 -2 -5 -∞

γ

10
-3

10
-2

10
-1

10
0

10
1

10
2

D
o
w
n
lo
a
d
ti
m
e
s
(i
n
s
e
c
o
n
d
s
)

(c) W = 300 Mbps

HTTP

ONLY

-0.25 -0.5 -0.75 -1 -2 -5 -∞

γ

10
-3

10
-2

10
-1

10
0

10
1

10
2

D
o
w
n
lo
a
d
ti
m
e
s
(i
n
s
e
c
o
n
d
s
)

(d) W = 350 Mbps

Fig. 5: Measured download times for different cloud bandwidth limits.

-0.25 -0.5 -0.75 -1 -2 -5 -∞
γ

-10
2

-10
1

-10
0
0

10
0

10
1

10
2

Δ
Q
o
E
(i
n
s
e
c
o
n
d
s
)

(a) W = 200 Mbps

-0.25 -0.5 -0.75 -1 -2 -5 -∞
γ

-10
2

-10
1

-10
0
0

10
0

10
1

10
2

Δ
Q
o
E
(i
n
s
e
c
o
n
d
s
)

(b) W = 250 Mbps

-0.25 -0.5 -0.75 -1 -2 -5 -∞
γ

-10
2

-10
1

-10
0
0

10
0

10
1

10
2

Δ
Q
o
E
(i
n
s
e
c
o
n
d
s
)

(c) W = 300 Mbps

-0.25 -0.5 -0.75 -1 -2 -5 -∞
γ

-10
2

-10
1

-10
0
0

10
0

10
1

Δ
Q
o
E
(i
n
s
e
c
o
n
d
s
)

(d) W = 350 Mbps

Fig. 6: Measured ΔQoE for different cloud bandwidth limits.

helps reduce the outgoing bandwidth on the cloud side thanks

to the contribution of peers. A key observation is that bundling
two HTTP swarms performs better than any other type of
bundling and that the gain tends to increase when the sizes
of the swarms and/or the files increase.

B. Evaluation bundling in a personal cloud

1) The Ubuntu One trace: In our validation, we use a real

trace of the Ubuntu One (UB1) system. The trace was provided

by Canonical Ltd.6 in the context of the CloudSpaces7 project.

The logs were collected for about a month from their servers

located in London, based on the behavior of real users. A

complete analysis of the trace is provided in [12].

In this paper, we use a sample8 of the trace that corresponds

to an hour during a random day. The sample accounts for

225, 514 download operations related to 173, 756 distinct files.

The average file size in the sample is about 1 MB, which can

be viewed as a worst case for cloud content distribution. For

each download operation, several information was collected,

including: the timestamp, the hash and size of the file in

question, the user hash identifier and the corresponding upload

and download bandwidths. For the sake of privacy, files and

user real identifiers were presented in the form of unique hash

codes.
2) Experimental settings: To evaluate the efficiency of our

proposal, we developed a Python9 simulator that uses the UB1

trace and re-simulates the arrival pattern of the clients. The

simulator implements the following strategies:

6Canonical Ltd. http://www.canonical.com
7The CloudSpaces project: http://cloudspaces.eu
8The sample is available at: http://ast-deim.urv.cat/lcn16/ub1 sample.txt
9Python Software Foundation: http://www.python.org

a) HTTP ONLY: This strategy represents the default

behavior of a personal cloud where HTTP is the only download

protocol used to distribute the files from the cloud servers to

the end users.

b) MAX GAIN: This scenario corresponds to the appli-

cation of bundling across different swarms of clients. At each

timestamp, the objective matrix Gain is calculated. The choice

of swarms to bundle is made based on the application of the

maximum weight matching algorithm.

c) MAX GAIN> γ: This scenario is similar to the previ-

ous one. However, it adds an extra constraint for the swarms

to be bundled in order to avoid taking bundling decisions that

could lead to notable degrades in performance. To this extent,

the objective matrix Gain is filtered before being converted

to a graph, and only the combinations (si, sj) that satisfy the

condition gainsi,sj > γ are considered. γ is a real value

which can be set by the cloud provider. γ can be positive

or negative based on the current load on the cloud. A negative

value of γ means that losses of up to γ times of the original

download time are tolerated. For instance, γ = −1 means that

the bundles considered are the ones that can lead to an increase

in download time equal to the original download time at most.

Based on our experiments, we have noticed that putting such a

limit is very important to prevent degrading the download time

for the clients. Note that the MAX GAIN scenario corresponds

also to the case MAX GAIN> γ where γ = −∞.

In our implementation of the simulator, we use the Net-

workx10[13] graph matching library. Networkx is based on

10NetworkX is a Python software package for the creation, manipulation,
and study of the structure, dynamics, and functions of complex networks.
Networkx is available under the BSD license at: https://github.com/networkx

430430430

-0.25 -0.5 -0.75 -1 -2 -5 -∞

γ

-10
3

-10
2

-10
1

-10
0
0

g
a
in

s
i
,s

j

(a) W = 200 Mbps

-0.25 -0.5 -0.75 -1 -2 -5 -∞

γ

-10
3

-10
2

-10
1

-10
0
0

g
a
in

s
i
,s

j

(b) W = 350 Mbps

Fig. 7: Values of the bundling metric gainsi,sj at the moment

of the bundling decision.

the “blossom” method for finding augmenting paths and the

“primal-dual” method for finding a matching of maximum

weight, both methods invented by Edmonds [9].

3) Results: We exploit the previously described trace sam-

ple of UB1 and re-simulate the arrival pattern of the peers

to validate our approach. We run our simulator with different

limits γ ∈ {−0.25,−0.5,−0.75,−1,−2,−5,−∞}. We col-

lect the logs of each experiment and evaluate our proposal

comparing the results with the ones obtained using HTTP

alone.

Fig.5 presents the download times for all the download

operations in the trace for different cloud bandwidth lim-

its W ∈ {200, 250, 300, 350 Mbps}. Compared with the

HTTP ONLY scenario, we notice that bundling performs

better under smaller bandwidth limits. Surely, when the W
gets higher, the download times are shorter and the overall

performance of the system improves. However, in these cases,

bundling does not improve the download times and sometimes

it can even degrade the performance of the system. This result

agrees very well with our analysis in Section V.

Fig.7 shows the importance of the γ constant. It depicts a

box plot of the values of the bundling metric gainsi,sj for each

couple (si, sj) at the moment of bundling. When γ = −∞
(MAX GAIN scenario), the bundling combinations output by

the graph matching library can lead to important degradation in

download time. In fact, the expected gainsi,sj in that scenario

could reach -102 which reflects a resulting download 100 times

longer than the original one. This proves that setting γ to a

reasonable value is very important to prevent degrading the

download time for the clients. This importance can be further

perceived in Fig.6. This figure presents the ΔQoE for all the

download operations in the trace for different cloud bandwidth

limits. ΔQoE is calculated for each download operation as the

difference between the download time measured with HTTP

only and the one using bundling. We remind that a positive

value of ΔQoE reflects an improvement in download time

compared to the use of HTTP only, while a negative ΔQoE
means that the use of bundling has affected negatively the

download time and made it longer. We notice that when

bundling was deployed with γ = −∞, most of the clients

have experienced an increase in download time of about 10

seconds. Nevertheless, when γ is small, the majority of the

-0.25 -0.5 -0.75 -1 -2 -5 -∞
γ

0

10

20

30

40

50

B
u
n
d
le
d
s
w
a
rm

s
(i
n
%
) W=200 Mbps

W=250 Mbps

W=300 Mbps

W=350 Mbps

(a) Bundled swarms percentage

-0.25 -0.5 -0.75 -1 -2 -5 -∞
γ

−4

−3

−2

−1

0

C
lo
u
d
o
ff
lo
a
d
(i
n
%
)

W=200 Mbps

W=250 Mbps

W=300 Mbps

W=350 Mbps

(b) Cloud offload percentage

Fig. 8: Percentages of cloud offload and bundled swarms

operations have witnessed an improvement in download time

of a few seconds.

Fig.8a presents the percentage of bundled swarms as a

function of γ. We notice that the number of bundled swarms

increases with γ. As a matter of fact, when γ is small, the

bundling combinations that satisfy the condition gainsi,sj > γ
are more limited which explains the limited percentage of

bundled swarms.

In addition to the improvement in download time, the

use of bundling does not increase the usage of the cloud’s

bandwidth. Fig.8b depicts the cloud offload percentages for

different combinations of γ and W . In accordance with the

analysis in Section V, we notice savings in cloud bandwidth

utilization when the ΔQoE is positive.

Summary: Based on the UB1 trace, we confirm that cross-
swarm bundling can be useful to improve QoE in personal
clouds, especially when the available outgoing bandwidth is

small. In this case, cross-swarm bundling has a positive side

effect by reducing the server side bandwidth requirements. The

study of the trace has also proven the importance of filtering
the objective matrix before applying graph matching in order

to avoid taking bundling decisions that could lead to degrades

in the QoE.

VIII. CONCLUSIONS

In this paper, we propose to use cross-swarm bundling

in order to improve the QoE for the clients by leveraging

their spare upload capacities. To this extent, we present a

methodology to implement this feature in personal clouds.

Our proposal is validated using a real trace of Ubuntu One.

The results prove the efficiency of the approach in improving

the QoE for the clients compared to the classic distribution

methods.

Bundling can be adopted by personal clouds to improve

their performance and gain more clients. Our future plans

include the study and evaluation of new bundling metrics. We

plan also to extend the idea of bundling to systems (other than

personal clouds) with bigger shared files.

ACKNOWLEDGMENTS

This work has been partially funded by the Spanish Ministry

of Economy and Competitiveness in the context of the project

431431431

Cloud Services and Community Networks (TIN2013-47245-

C2-2-R) and by EU in the context of the projects CloudSpaces
(FP7-317555) and IOStack (H2020-ICT-2014-7-1).

REFERENCES

[1] R. Chaabouni, P. Garcia-Lopez, M. Sanchez-Artigas, S. Ferrer-Celma,
and C. Cebrian, “Boosting content delivery with BitTorrent in online
cloud storage services,” in Peer-to-Peer Computing (P2P), 2013 IEEE
Thirteenth International Conference on, Sept 2013, pp. 1–2.

[2] R. Chaabouni, M. Sanchez-Artigas, and P. Garcia-Lopez, “Reducing
costs in the personal cloud: Is bittorrent a better bet?” in Peer-to-Peer
Computing (P2P), 14-th IEEE International Conference on, Sept 2014,
pp. 1–10.

[3] R. Chaabouni, M. Sanchez-Artigas, P. Garcia-Lopez, and L. Pamies-
Juarez, “The power of swarming in personal clouds under bandwidth
budget,” Journal of Network and Computer Applications, vol. 65, pp.
48 – 71, 2016.

[4] B. Cohen, “Incentives Build Robustness in BitTorrent,” 2003.
[5] I. Drago, E. Bocchi, M. Mellia, H. Slatman, and A. Pras, “Benchmarking

Personal Cloud Storage,” in Proceedings of the 2013 Conference on
Internet Measurement Conference, ser. IMC’13. ACM, 2013, pp. 205–
212.

[6] I. Drago, M. Mellia, M. M. Munafo, A. Sperotto, R. Sadre, and A. Pras,
“Inside Dropbox: Understanding Personal Cloud Storage Services,” in
Proceedings of the 2012 ACM Conference on Internet Measurement
Conference, ser. IMC ’12. ACM, 2012, pp. 481–494.

[7] J. Edmonds, “Paths, trees and flowers,” Canadian Journal of Mathemat-
ics, vol. 17, pp. 449–467, 1965.

[8] H. N. Gabow, “Implementations of algorithms for maximum matching
on nonbipartite graphs,” Ph.D. dissertation, Stanford University, 1973.

[9] Z. Galil, “Efficient Algorithms for Finding Maximum Matching in
Graphs,” ACM Comput. Surv., vol. 18, no. 1, pp. 23–38, Mar. 1986.

[10] P. Garcia-Lopez, M. Sanchez-Artigas, C. Cotes, G. Guerrero, A. Moreno,
and S. Toda, “StackSync: Architecturing the Personal Cloud to Be
in Sync.” [Online]. Available: http://stacksync.org/wp-content/uploads/
2013/11/stacksync full paper.pdf

[11] P. Garcia-Lopez, M. Sanchez-Artigas, S. Toda, C. Cotes, and J. Lenton,
“Stacksync: Bringing elasticity to dropbox-like file synchronization,”
in Proceedings of the 15th International Middleware Conference, ser.
Middleware ’14. ACM, 2014, pp. 49–60.

[12] R. Gracia-Tinedo, Y. Tian, J. Sampe, H. Harkous, J. Lenton, P. Garcia-
Lopez, M. Sanchez-Artigas, and M. Vukolic, “Dissecting ubuntuone:
Autopsy of a global-scale personal cloud back-end,” in Proceedings of

the 2015 ACM Conference on Internet Measurement Conference, ser.
IMC ’15. ACM, 2015, pp. 155–168.

[13] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring Network
Structure, Dynamics, and Function using NetworkX,” in Proceedings
of the 7th Python in Science Conference, G. Varoquaux, T. Vaught, and
J. Millman, Eds., 2008, pp. 11 – 15.

[14] J. Han, T. Chung, S. Kim, H. chul Kim, J. Kangasharju, T. T. Kwon,
and Y. Choi, “Strategic bundling for content availability and fast
distributionin BitTorrent,” Computer Communications, vol. 43, no. 0,
pp. 64 – 73, 2014.

[15] J. Han, T. Chung, S. Kim, T. T. Kwon, H.-c. Kim, and Y. Choi, “How
Prevalent is Content Bundling in BitTorrent,” in Proceedings of the
ACM SIGMETRICS Joint International Conference on Measurement and
Modeling of Computer Systems, ser. SIGMETRICS ’11. ACM, 2011,
pp. 127–128.

[16] J. Han, S. Kim, T. Chung, T. T. Kwon, H.-c. Kim, and Y. Choi,
“Bundling Practice in BitTorrent: What, How, and Why,” in Proceedings
of the 12th ACM SIGMETRICS/PERFORMANCE Joint International
Conference on Measurement and Modeling of Computer Systems, ser.
SIGMETRICS ’12. ACM, 2012, pp. 77–88.

[17] R. Kumar and K. Ross, “Peer-Assisted File Distribution: The Minimum
Distribution Time,” in Hot Topics in Web Systems and Technologies,
2006. HOTWEB ’06. 1st IEEE Workshop on, Nov 2006, pp. 1–11.

[18] Z. Li, C. Jin, T. Xu, C. Wilson, Y. Liu, L. Cheng, Y. Liu, Y. Dai, and
Z.-L. Zhang, “Towards network-level efficiency for cloud storage ser-
vices,” in Proceedings of the 2014 Conference on Internet Measurement
Conference, ser. IMC ’14. ACM, 2014, pp. 115–128.

[19] Z. Li, C. Wilson, Z. Jiang, Y. Liu, B. Y. Zhao, C. Jin, Z.-L. Zhang,
and Y. Dai, “Efficient batched synchronization in dropbox-like cloud
storage services,” in Proceedings of the 14th International Middleware
Conference, ser. Middleware ’13, 2013, pp. 307–327.

[20] D. S. Menasche, A. A. Rocha, B. Li, D. Towsley, and A. Venkataramani,
“Content Availability and Bundling in Swarming Systems,” in Pro-
ceedings of the 5th International Conference on Emerging Networking
Experiments and Technologies, ser. CoNEXT ’09. ACM, 2009, pp.
121–132.

[21] S. Zhang, N. Carlsson, D. Eager, Z. Li, and A. Mahanti, “Dynamic File
Bundling for Large-scale Content Distribution,” in Proceedings of the
2012 IEEE 37th Conference on Local Computer Networks (LCN 2012),
ser. LCN ’12. IEEE Computer Society, 2012, pp. 601–609.

[22] S. Zhang, N. Carlsson, D. L. Eager, Z. Li, and A. Mahanti, “Towards a
Dynamic File Bundling System for Large-Scale Content Distribution,” in
MASCOTS 2011, 19th Annual IEEE/ACM International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication
Systems, Singapore, 25-27 July, 2011, 2011, pp. 472–474.

432432432

