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Abstract
Object stores are becoming pervasive due to their

scalability and simplicity. Their broad adoption, how-
ever, contrasts with their rigidity for handling heteroge-
neous workloads and applications with evolving require-
ments, which prevents the adaptation of the system to
such varied needs. In this work, we present Crystal, the
first Software-Defined Storage (SDS) architecture whose
core objective is to efficiently support multi-tenancy in
object stores. Crystal adds a filtering abstraction at the
data plane and exposes it to the control plane to en-
able high-level policies at the tenant, container and ob-
ject granularities. Crystal translates these policies into a
set of distributed controllers that can orchestrate filters at
the data plane based on real-time workload information.
We demonstrate Crystal through two use cases on top of
OpenStack Swift: One that proves its storage automation
capabilities, and another that differentiates IO bandwidth
in a multi-tenant scenario. We show that Crystal is an ex-
tensible platform to deploy new SDS services for object
stores with small overhead.

1 Introduction

Object stores are becoming an increasingly pervasive
storage building block due to their scalability, availabil-
ity and usage simplicity via HTTP RESTful APIs [1, 8].
These desirable features have spurred the adoption of
object stores by many heterogeneous applications and
systems, ranging from Personal Clouds [4, 25], Big
Data companies such as DataBricks [2] and Mirantis [6]
and analytics frameworks [22, 17], and Web applica-
tions [19], to name a few.

Despite their growing popularity, object stores are not
well prepared for heterogeneity. Typically, a deployment
of an object store in the cloud uses a monolithic config-
uration setup, even when the same object store acts as
a substrate for different types of applications with time-
varying requirements [17, 16]. This results in all appli-

cations experiencing the same service level, though the
workloads from different applications can vary dramat-
ically. For example, while a social network application
such as Facebook would have to store a large number of
small-medium sized photos (KB- to MB-sized objects),
a Big Data analytics framework would probably gener-
ate read and write requests for large files. It is clear that
using a static configuration inhibits optimization of the
system to such varying needs.

But not only this; beyond the particular needs of a
type of workload, the requirements of applications can
also vary greatly. For example, an archival application
may require of transparent compression, annotation, and
encryption of the archived data. In contrast, a Big Data
analytics application may benefit from the computational
resources of the object store to eliminate data movement
and enable in-place analytics capabilities [22, 17]. Sup-
porting such a variety of requirements in an object store
is challenging, because in current systems, custom func-
tionality is hard-coded into the system implementation
due to the absence of a true programmable layer, making
it difficult to maintain as the system evolves.

1.1 Scope and Challenges

In this paper, we argue that Software-Defined Storage
(SDS) is a compelling solution to these problems. As in
SDN, the separation of the “data plane” from the “control
plane” is the best-known principle in SDS [41, 34, 39,
23, 38]. Such separation of concerns is the cornerstone
of supporting heterogeneous applications in data centers.
However, the application of SDS fundamentals on cloud
object stores is not trivial. Among other things, it needs
to address two main challenges:

A flexible control plane. The control plane should be
the key enabler that makes it possible to support multiple
applications separately using dynamically configurable
functionalities. Since the de facto way of expressing
management requirements and objectives in SDS is via
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policies, they should also dictate the management rules
for the different tenants in a shared object store. This is
not easy since policies can be very distinct. They can be
as simple as a calculation on an object such as compres-
sion, and as complex as the distributed enforcement of
per-tenant IO bandwidth limits. Further, as a singular at-
tribution of object storage, such policies have to express
objectives and management rules at the tenant, container
and object granularities, which requires of a largely dis-
tinct form of policy translation into the data plane com-
pared with prior work [41, 39, 38]. Identifying the nec-
essary abstractions to concisely define the management
policies is not enough. If the system evolves over time,
the control plane should be flexible enough to properly
describe the new application needs in the policies.

An extensible data plane. Although the controller in
all SDS systems is assumed to be easy to extend [41, 39,
38], data plane extensibility must be significantly richer
for object storage; for instance, it must enable to perform
“on the fly” computations as the objects arrive and depart
from the system to support application-specific functions
like sanitization, Extract-Transform-Load (ETL) opera-
tions, caching, etc. This entails the implementation of a
lightweight, yet versatile computing layer, which do not
exist today in SDS systems. Building up an extensible
data plane is challenging. On the one hand, it requires of
new abstractions that enable policies to be succinctly ex-
pressed. On the other hand, these abstractions need to be
flexible enough to handle heterogeneous requirements,
that is, from resource management to simple automation,
which is not trivial to realize.

1.2 Contributions
To overcome the rigidity of object stores we present
Crystal: The first SDS architecture for object storage to
efficiently support multi-tenancy and heterogeneous ap-
plications with evolving requirements. Crystal achieves
this by separating policies from implementation and uni-
fying an extensible data plane with a logically centralized
controller. As a result, Crystal allows to dynamically
adapt the system to the needs of specific applications,
tenants and workloads.

Of Crystal, we highlight two aspects, though it has
other assets. First, Crystal presents an extensible archi-
tecture that unifies individual models for each type of re-
source and transformation on data. For instance, global
control on a resource such as IO bandwidth can be eas-
ily incorporated as a small piece of code. A dynamic
management policy like this is materialized in form of
a distributed, supervised controller, which is the Crystal
abstraction that enables the addition of new control al-
gorithms (Section 5.2). In particular, these controllers,
which are deployable at runtime, can be fed with plug-
gable per-workflow or resource metrics. Examples of

metrics are the number of IO operations per second and
the bandwidth usage. An interesting property of Crystal
is that it can even use object metadata to better drive the
system towards the specified objectives.

Second, Crystal’s data plane abstracts the complex-
ity of individual models for resources and computations
through the filter abstraction. A filter is a piece of pro-
gramming logic that can be injected into the data plane
to perform custom calculations on object requests. Crys-
tal offers a filter framework that enables the deployment
and execution of general computations on objects and
groups of objects. For instance, it permits the pipelining
of several actions on the same object(s) similar to stream
processing frameworks [30]. Consequently, practitioners
and systems developers only need to focus on the devel-
opment of storage filters, as their deployment and exe-
cution is done transparently by the system (Section 5.1).
To our knowledge, no previous SDS system offers such
a computational layer to act on resources and data.

We evaluate the design principles of Crystal by imple-
menting two use cases on top of OpenStack Swift: One
that demonstrates the automation capabilities of Crystal,
and another that enforces IO bandwidth limits in a multi-
tenant scenario. These uses cases demonstrate the feasi-
bility and extensibility of Crystal’s design. The experi-
ments with real workloads and benchmarks are run on a
13-machine cluster. Our experiments reveal that policies
help to overcome the rigidity of object stores incurring
small overhead. Also, defining the right policies may
report performance and cost benefits to the system.

In summary, our key contributions are:

• Design of Crystal, the first SDS architecture for ob-
ject storage that efficiently supports multi-tenancy
and applications with evolving requirements;

• A control plane for multi-tenant object storage, with
flexible policies and their transparent translation
into the enforcement mechanisms at the data plane;

• An extensible data plane that offers a filter abstrac-
tion, which can encapsulate from arbitrary compu-
tations to resource management functionality, en-
abling concise policies for complex tasks;

• The implementation and deployment of policies for
storage automation and IO bandwidth control that
demonstrate the design principles of Crystal.

2 Crystal Design

Crystal seeks to efficiently handle workload heterogene-
ity and applications with evolving requirements in shared
object storage. To achieve this, Crystal separates high-
level policies from the mechanisms that implement them
at the data plane, to avoid hard-coding the policies in the
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FOR [TARGET] WHEN [TRIGGER CLAUSE] DO [ACTION CLAUSE]

TENANT T1

CONTAINER C1

SET COMPRESSION WITH TYPE=LZ4,

SET CACHING ON PROXY TRANSIENT

OBJECT_TYPE=DOCS

AND OBJECT_SIZE<10M

SET ENCRYPTION

GETS_SEC > 5

TENANT T2 SET BANDWIDTH WITH GET_BW=30MBps

P1

P2

P3

Content management policy Resource management policyData management policy

Storage automation policy Globally coordinated policy

Figure 1: Structure of the Crystal DSL.

system itself. To do so, it uses three abstractions: filter,
metric, and controller, in addition to policies.

2.1 Abstractions in Crystal
Filter. A filter is a piece of code that a system adminis-
trator can inject into the data plane to perform custom
computations on incoming object requests1. In Crys-
tal, this concept is broad enough to include computa-
tions on object contents (e.g., compression, encryption),
data management like caching or pre-fetching, and even
resource management such as bandwidth differentiation
(Fig. 1). A key feature of filters is that the instrumented
system is oblivious to their execution and needs no mod-
ification to its implementation code to support them.

Inspection trigger. This abstraction represents in-
formation accrued from the system to automate the ex-
ecution of filters. There are two types of information
sources. A first type that corresponds to the real-time
metrics got from the running workloads, like the number
of GET operations per second of a data container or the
IO bandwidth allocated to a tenant. As with filters, a
fundamental feature of workload metrics is that they can
be deployed at runtime. A second type of source is the
metadata from the objects themselves. Such metadata
is typically associated with read and write requests and
includes properties like the size or type of objects.

Controller. In Crystal, a controller represents an algo-
rithm that manages the behavior of the data plane based
on monitoring metrics. A controller may contain a sim-
ple rule to automate the execution of a filter, or a com-
plex algorithm requiring global visibility of the cluster
to control a filter’s execution under multi-tenancy. Crys-
tal builds a logically centralized control plane formed by
supervised and distributed controllers. This allows an
administrator to easily deploy new controllers on-the-fly
that cope with the requirements of new applications.

Policy. Our policies should be extensible for really al-
lowing the system to satisfy evolving requirements. This
means that the structure of policies must facilitate the in-
corporation of new filters, triggers and controllers.

To succinctly express policies, Crystal abides by a
structure similar to that of the popular IFTTT (If-This-
Then-That) service [5]. This service allows users to ex-
press small rule-based programs, called “recipes”, using
triggers and actions. For example:

1Filters work in an online fashion. To explore the feasibility of
batch filters on already stored objects is matter of future work.
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Figure 2: High-level overview of Crystal’s architecture
materialized on top of OpenStack Swift.

TRIGGER: compressibility of an object is > 50%
ACTION: compress
RECIPE: IF compressibility is > 50% THEN compress

An IFTTT-like language can reflect the extensibility
capabilities of the SDS system; at the data plane, we can
infer that triggers and actions are translated into our in-
spection triggers and filters, respectively. At the control
plane, a policy is a “recipe” that guides the behavior of
control algorithms. Such apparently simple policy struc-
ture can express different policy types. On the one hand,
Fig. 1 shows storage automation policies that enforce
a filter either statically or dynamically based on simple
rules; for instance, P1 enforces compression and encryp-
tion on document objects of tenant T1, whereas P2 ap-
plies data caching on small objects of container C1 when
the number of GETs/second is > 5. On the other hand,
such policies can also express objectives to be achieved
by controllers requiring global visibility and coordina-
tion capabilities of the data plane. That is, P3 tells a
controller to provide at least 30MBps of aggregated GET
bandwidth to tenant T2 under a multi-tenant workload.

2.2 System Architecture
Fig. 2 presents Crystal’s architecture, which consists of:

Control Plane. Crystal provides administrators with
a system-agnostic DSL (Domain-Specific Language) to
define SDS services via high-level policies. The DSL
“vocabulary” can be extended at runtime with new filters
and inspection triggers. The control plane includes an
API to compile policies and to manage the life-cycle and
metadata of controllers, filters and metrics (see Table 1).

Moreover, the control plane is built upon a distributed
model. Although logically centralized, the controller is,
in practice, split into a set of autonomous micro-services,
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each running a separate control algorithm. Other micro-
services, called workload metric processes, close the
control loop by exposing monitoring information from
the data plane to controllers. The control loop is also ex-
tensible, given that both controllers and workload metric
processes can be deployed at runtime.

Data Plane. Crystal’s data plane has two core exten-
sion points: Inspection triggers and filters. First, a devel-
oper can deploy new workload metrics at the data plane
to feed distributed controllers with new runtime informa-
tion on the system. The metrics framework runs the code
of metrics and publishes monitoring events to the mes-
saging service. Second, data plane programmability and
extensibility is delivered through the filter framework,
which intercepts object flows in a transparent manner and
runs computations on them. A developer integrating a
new filter only needs to contribute the logic; the deploy-
ment and execution of the filter is managed by Crystal.

3 Control Plane

The control plane allows writing policies that adapt the
data plane to manage multi-tenant workloads. It is
formed by the DSL, the API and distributed controllers.

3.1 Crystal DSL
Crystal’s DSL hides the complexity of low-level policy
enforcement, thus achieving simplified storage adminis-
tration (Fig. 1). The structure of our DSL is as follows:

Target: The target of a policy represents the recipi-
ent of a policy’s action (e.g., filter enforcement) and it
is mandatory to specify it on every policy definition. To
meet the specific needs of object storage, targets can be
tenants, containers or even individual data objects. This
enables high management and administration flexibility.

Trigger clause (optional): Dynamic storage automa-
tion policies are characterized by the trigger clause. A
policy may have one or more trigger clauses —separated
by AND/OR operands— that specify the workload-based
situation that will trigger the enforcement of a filter on
the target. Trigger clauses consist of inspection trig-
gers, operands (e.g, >, <, =) and values. The DSL
exposes both types of inspection triggers: workload
metrics (e.g., GETS SEC) and request metadata (e.g.,
OBJECT SIZE<512).

Action clause: The action clause of a policy defines
how a filter should be executed on an object request once
the policy takes place. The action clause may accept pa-
rameters after the WITH keyword in form of key/value
pairs that will be passed as input to customize the filter
execution. Retaking the example of a compression filter,
we may decide to enforce compression using a gzip or
an lz4 engine, and even their compression level.

Crystal Controller Calls Description

add policy
delete policy
list policies

Policy management API calls. For storage automation policies, the add policy
call can either to directly enforce the filter or to deploy a controller to do so. For
globally coordinated policies, the call sets an objective at the metadata layer.

register keyword
delete keyword

Calls that interact with Crystal registry to associate DSL keywords with filters,
inspection triggers or coin new terms to be used as trigger conditions (e.g., DOCS).

deploy controller
kill controller

These calls are used to manage the life-cycle of distributed controllers and work-
load metric processes in the system.

Filter Framework Calls Description

deploy filter
undeploy filter
list filters

Calls for deploying, undeploying and listing filters associated to a target.
deploy/undeploy filter calls interact with the filter framework at the data
plane for enabling/disabling filter binaries to be executed on a specific target.

update slo
list slo
delete slo

Calls to manage “tenant objectives” for coordinated resource management filters.
For instance, bandwidth differentiation controllers take as input this information
in order to provide an aggregated IO bandwidth share at the data plane.

Workload Metric Calls Description

deploy metric
delete metric

Calls for managing workload metrics at the data plane. These calls also manage
workload metric processes to expose data plane metrics to the control plane.

*For the sake of simplicity, we do not include call parameters in this table.

Table 1: Main calls of Crystal controller, filter frame-
work and workload metrics management APIs.

To cope with object stores formed by proxies/storage
nodes (e.g., Swift), our DSL enables to explicitly control
the execution stage of a filter with the ON keyword. Also,
dynamic storage automation policies can be persistent or
transient; a persistent action means that once the policy
is triggered the filter enforcement remains indefinitely
(by default), whereas actions to be executed only during
the period where the condition is satisfied are transient
(keyword TRANSIENT, P2 in Fig. 1).

The vocabulary of our DSL can be extended on-the-fly
to accommodate new filters and inspection triggers. That
is, in Fig. 1 we can use keywords COMPRESSION and
DOCS in P1 once we associate “COMPRESSION” with
a given filter implementation and “DOCS” with some file
extensions, respectively (see Table 1).

The Crystal DSL has other features: i) specialization
of policies based on the target scope, so that if several
policies apply to the same request, only the most specific
one is executed (e.g., container-level policy is more spe-
cific than a tenant-level one), ii) pipelining several filters
on a single request (e.g., compression + encryption) or-
dered as they are defined in the policy, similar to stream
processing frameworks [30], and iii) grouping, which en-
ables to enforce a single policy to a group of targets; that
is, we can create a group like WEB CONTAINERS to rep-
resent all the containers that serve Web pages.

As visible in Table 1, Crystal offers a DSL compilation
service via API calls. Crystal compiles simple automa-
tion policies as target→filter relationships at the meta-
data layer. Next, we show how dynamic policies (i.e.,
with WHEN clause) use controllers to enforce filters.

3.2 Distributed Controllers

Crystal resorts to distributed controllers, in form of su-
pervised micro-services, which can be deployed in the
system at runtime to extend the control plane [15, 18, 40].

We offer two types of controllers: automation and
global controllers. On the one hand, the Crystal DSL
compiles dynamic storage automation policies into au-
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Figure 3: Interactions among automation controllers,
workload metric processes and the filter framework.

tomation controllers (e.g., P2 in Fig. 1). Their life-cycle
consists of consuming the appropriate monitoring met-
rics and interact with the filter framework API to enforce
a filter when the trigger clause is satisfied.

On the other hand, global controllers are not generated
by the DSL; instead, by simply extending a base class
and overriding its computeAssignments method,
developers can deploy controllers that contain complex
algorithms with global visibility and continuous control
of a filter at the data plane (e.g., P3 in Fig. 1). To
this end, the base global controller class encapsulates the
logic i) to ingest monitoring events, ii) to disseminate
the computed assignments across nodes2, and iii) to get
Service-Level Objectives (SLO) to be enforced from the
metadata layer (see Table 1). This allowed us to deploy
distributed IO bandwidth control algorithms (Section 5).

Extensible control loop: To close the control loop,
workload metric processes are micro-services that pro-
vide controllers with monitoring information from the
data plane. While running, a workload metric process
consumes and aggregates events from one workload met-
ric at the data plane. For the sake of simplicity [40], we
advocate to separate workload metrics not only per met-
ric type, but also by target granularity.

Controllers and workload metrics processes interact
in a publish/subscribe fashion [21]. For instance, Fig.
3 shows that, once initialized, an automation controller
subscribes to the appropriate workload metric process,
taking into account the target granularity. The subscrip-
tion request of a controller specifies the target to which
it is interested in, such as tenant T1 or container C1; this
ensures that controllers do not receive unnecessary moni-
toring information from other targets. Once the workload
metric process receives the subscription request, it adds
the controller to its observer list. Periodically, it notifies
the activity of the different targets to the interested con-
trollers that may trigger the execution of filters.

4 Data Plane

At the data plane, we offer two main extension hooks:
Inspection triggers and a filter framework.

2For efficiency reasons, global controllers disseminate assignments
to data plane filters also via the messaging service.

4.1 Inspection Triggers
Inspection triggers enable controllers to dynamically re-
spond to workload changes in real time. Specifically, we
consider two types of introspective information sources:
object metadata and monitoring metrics.

First, some object requests embed semantic informa-
tion related to the object at hand in form of metadata.
Crystal enables administrators to enforce storage filters
based on such metadata. Concretely, our filter framework
middleware (see Section 4.2) is capable of analyzing at
runtime HTTP metadata of object requests to execute fil-
ters based on the object size or file type, among others.

Second, Crystal builds a metrics middleware to add
new workload metrics on the fly. At the data plane, a
workload metric is a piece of code that accounts for a par-
ticular aspect of the system operation and publishes that
information. In our design, a new workload metric can
inject events to the monitoring service without interfer-
ing with existing ones (Table 1). Our metrics framework
allows developers to plug-in metrics that inspect both the
type of requests and their contents (e.g., compressibil-
ity [29]). We provide the logic (i.e., AbstractMetric
class) to abstract developers from the complexity of re-
quest interception and event publishing.

4.2 Filter Framework
The Crystal filter framework enables developers to de-
ploy and run general-purpose code on object requests.
Crystal borrows ideas from active storage literature [36,
35] as a mean of building filters to enforce policies.

Our framework achieves flexible execution of filters.
First, it enables to easily pipeline several filters on a sin-
gle storage request. Currently, the execution order of fil-
ters is set explicitly by the administrator, although filter
metadata can be exploited to avoid conflicting filter or-
dering errors [20]. Second, to deal with object stores
composed by proxies/storage nodes, Crystal allows ad-
ministrators to define the execution point of a filter.

To this end, the Crystal filter framework consists of i)
a filter middleware, and ii) filter execution environments.

Filter middleware: Our filter middleware intercepts
data streams and classifies incoming requests. Upon a
new object request, the middleware at the proxy performs
a single metadata request to infer the filters to be ex-
ecuted on that request depending on the target. If the
target has associated filters, the filter middleware sets the
appropriate metadata headers in the request for triggering
the execution of filters through the read/write path.

Filters that change the content of data objects may re-
ceive a special treatment (e.g., compression, encryption).
To wit, if we create a filter with the reverse flag enabled,
it means that the execution of the filter when the object
was stored should be always undone upon a GET request.
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That is, this yields that we may activate data compression
on certain periods, but tenants will always download de-
compressed objects. To this end, prior to storing an ob-
ject, we tag it with extended metadata that keeps track
of the enforced filters with reverse flag set. Upon a GET
request, the filter middleware fetches such metadata from
the object itself to trigger the reverse transformations on
it prior to the execution of regular filters.

Filter execution environments: Currently, our mid-
dleware can support two filter execution environments:

Isolated filter execution: Crystal provides an isolated
filter execution environment to perform general-purpose
computations on object streams with high security guar-
antees. To this end, we extended the Storlets frame-
work [7] with pipelining and stage execution control
functionalities. Storlets provide Swift with the capabil-
ity to run computations close to the data in a secure and
isolated manner making use of Docker containers [3].
Invoking a Storlet on a data object is done in an isolated
manner so that the data accessible by the computation
is only the object’s data and its user metadata. Also, a
Docker container only runs filters of a single tenant.

Native filter execution: The isolated filter execution
environment trades-off higher security for lower commu-
nication capabilities and interception flexibility. For this
reason, we also contribute an alternative way to intercept
and execute code natively. As with Storlets, a developer
can deploy code modules as native filters at runtime by
following simple implementation guidelines. However,
native filters can i) execute code at all the possible points
of a request’s life-cycle, and ii) communicate with exter-
nal components (e.g, metadata layer), as well as to access
storage devices (e.g., SSD). As Crystal is devised to ex-
ecute trusted code from administrators, this environment
represents a more flexible alternative.

5 Hands On: Extending Crystal

Next, we show the benefits of Crystal’s design by ex-
tending the system with data management filters and dis-
tributed control of IO bandwidth for OpenStack Swift.

5.1 New Storage Automation Policies

Goal: To define policies that enforce filters, like com-
pression, encryption or caching, even dynamically:
P1:FOR TENANT T1 WHEN OBJECT TYPE=DOCS DO SET
COMPRESSION ON PROXY, SET ENCRYPTION ON STORAGE NODE

P2:FOR CONTAINER C1 WHEN GETS SEC > 5 DO SET CACHING

Data plane (Filters): To enable such storage automa-
tion policies, we first need to develop the filters at the
data plane. In Crystal this can be done using either native
or isolated execution environments.

The next code snippet shows how to develop a filter for
our isolated execution environment. A system developer
only needs to create a class that implements an interface
(IStorlet), providing the actual data transformations
on the object request streams (iStream, oStream) in-
side the invoke method. To wit, we implemented the
compression (gzip engine) and encryption (AES-256)
filters using storlets, whereas the caching filter exploits
SSD drives at proxies via our native execution environ-
ment. Then, once these filters were developed, we in-
stalled them via the Crystal filter framework API.

p u b l i c c l a s s S t o r l e t N a m e implemen t s I S t o r l e t {

@Override
p u b l i c vo id i nv oke ( A r r a y L i s t<S t o r l e t I n p u t S t r e a m> iS t r eam ,

A r r a y L i s t<S t o r l e t O u t p u t S t r e a m> oStream ,
Map<S t r i n g , S t r i n g> p a r a m e t e r s , S t o r l e t L o g g e r l o g g e r )
t h ro ws S t o r l e t E x c e p t i o n {

/ / Develop f i l t e r l o g i c h e r e
}

}

Data plane (Monitoring): Via the Crystal API (see Ta-
ble 1), we deployed metrics that capture various work-
load aspects (e.g., PUTs/GETs per second of a tenant)
to satisfy policies like P2. Similarly, we deployed the
corresponding workload metrics processes (one per met-
ric and target granularity) that aggregate such monitoring
information to be published to controllers. Also, our fil-
ter framework middleware is already capable of enforc-
ing filters based on object metadata, such as object size
(OBJECT SIZE) and type (OBJECT TYPE).

Control Plane: Finally, we registered intuitive key-
words for both filters and workload metrics at the meta-
data layer (e.g., CACHING, GET SEC TENANT) using
the Crystal registry API. To achieve P1, we also regis-
tered the keyword DOCS, which contains the file exten-
sions of common documents (e.g, .pdf, .doc). At this
point, we can use such keywords in our DSL to design
new storage policies.

5.2 Global Management of IO Bandwidth

Goal: To provide Crystal with means of defining policies
that enforce a global IO bandwidth SLO on GETs/PUTs:
P3:FOR TENANT T1 DO SET BANDWIDTH WITH GET BW=30MBps

Data plane (Filter). To achieve global bandwidth
SLOs on targets, we first need to locally control the band-
width of object requests. Intuitively, bandwidth control
in Swift may be performed at the proxy or storage node
stages. At the proxy level this task may be simpler, as
fewer nodes should be coordinated. However, this ap-
proach is agnostic to the background tasks (e.g., replica-
tion) executed by storage nodes, which impact on perfor-
mance [33]. We implemented a native bandwidth control
filter that enables the enforcement at both stages.

Our filter dynamically creates threads that serve and
control the bandwidth allocation for individual tenants,
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Algorithm 1 computeAssignments pseudo-code
embedded into a bandwidth differentiation controller

1: function COMPUTEASSIGNMENTS(info):
2: /* Retrieve the defined tenant SLOs from the metadata layer */
3: SLOs← getMetadataStoreSLOs();
4: /* Compute assignments on current tenant transfers to meet SLOs */
5: SLOAssignments← minSLO(info, SLOs);
6: /* Estimate spare bw at proxies/storage nodes based on current usage */
7: spareBw ← min(spareBwProxies(SLOAssignments), spareBwStor-

ageNodes(SLOAssignments));
8: spareBwSLOs← {};
9: /* Distribute spare bandwidth equally across all tenants */

10: for tenant in info do
11: spareBwSLOs[tenant]← spareBW

numTenants(in f o) ;
12: end for
13: /* Calculate assignments to achieve spare bw shares for tenants */
14: spareAssignments← spareSLO(SLOAssignments, spareBwSLOs);
15: /* Combine SLO and spare bw assignments on tenants */
16: return SLOAssignments ∪ spareAssignments;
17: end function

either at proxies or storage nodes. Our filter garbage-
collects control threads that are inactive for a certain
timeout. Moreover, it has a consumer process that re-
ceives bandwidth assignments from a controller to be en-
forced on a tenant’s object streams. Once the consumer
receives a new event, it propagates the assignments to the
filter that immediately take effect on current transfers.

Data plane (Monitoring): For building the control
loop, our bandwidth control service integrates individual
monitoring metrics per type of traffic (i.e., GET, PUT,
REPLICATION); this makes it possible to define poli-
cies for each type of traffic if needed. In essence, moni-
toring events contain a data structure that represents the
bandwidth share that tenants exhibit at proxies or per
storage node disk. We also deployed workload metric
processes to expose these events to controllers.

Control plane. We deployed Algorithm 1 as a global
controller to orchestrate our bandwidth differentiation
filter. Concretely, we aim at satisfying three main re-
quirements: i) A minimum bandwidth share per tenant,
ii) Work-conservation (do not leave idle resources), and
iii) Equal shares of spare bandwidth across tenants. The
challenge is to meet these requirements considering that
we do not control neither the data access of tenants nor
the data layout of Swift [28, 44].

To this end, Algorithm 1 works in three stages. First,
the algorithm tries to ensure the SLO for tenants spec-
ified in the metadata layer by resorting to function
minSLO (requirement 1, line 6). Essentially, minSLO
first assigns a proportional bandwidth share to tenants
with guaranteed bandwidth. Note that such assignment
is done in descending order based on the number of
parallel transfers per tenant, provided that tenants with
fewer transfers have fewer opportunities of meeting their
SLOs. Moreover, minSLO checks whether there ex-
ist overloaded nodes in the system. In the affirmative
case, the algorithm tries to reallocate bandwidth of ten-
ants with multiple transfers from overloaded nodes to

idle ones. In case that no reallocation is possible, the
algorithm reduces the bandwidth share of tenants with
SLOs on overloaded nodes.

In second place, once Algorithm 1 has calculated the
assignments for tenants with SLOs, it estimates the spare
bandwidth available to achieve full utilization of the clus-
ter (requirement 2, line 8). Note that the notion of spare
bandwidth depends on the cluster at hand, as the bottle-
neck may be either at the proxies or storage nodes.

Algorithm 1 builds a new assignment data structure
in which the spare bandwidth is equally assigned to
all tenants. The algorithm proceeds by calling func-
tion spareSLO to calculate the spare bandwidth assign-
ments (requirement 3, line 15). Note that spareSLO re-
ceives the SLOAssignments data structure that keeps
the already reserved node bandwidth according to the
SLO tenant assignments. The algorithm outputs the com-
bination of SLO and spare bandwidth assignments per
tenant. While more complex algorithms can be deployed
in Crystal [27], our goal in Algorithm 1 is to offer an at-
tractive simplicity/effectiveness trade-off, validating our
bandwidth differentiation framework.

6 Prototype Implementation

We tested our prototype in OpenStack Kilo version. The
Crystal API is implemented with the Django framework.
The API manages the system’s metadata from Redis 3.0
in-memory store [10]. We found that co-locating both
Redis and the Swift proxies in the same servers is a suit-
able deployment strategy. As we show next, this is spe-
cially true as only the filter middleware in proxies ac-
cesses the metadata layer (once per request).

We resort to PyActive [46] for building distributed
controllers and workload metric processes that can com-
municate among them (e.g., TCP, message brokers). For
fault tolerance, the PyActive supervisor is aware of all
the instantiated remote micro-services (either at one or
many servers) and can spawn a new process if one dies.

We built our metrics and filter frameworks as stan-
dard WSGI middlewares in Swift. The code of workload
metrics is dynamically deployed on Swift nodes, inter-
cepts the requests and periodically publishes monitoring
information (e.g., 1 second) via RabbitMQ 3.6 message
broker. Similarly, the filter framework middleware inter-
cepts a storage request and redirects it via a pipe either to
the Storlets engine or to a native filter, depending on the
filter pipeline definition. As both filters and metrics can
run on all Swift nodes, in the case of server failures they
can be executed in other servers holding object replicas.

The code of Crystal is publicly available3 and our con-
tributions to the Storlets project are submitted for accep-
tance to the official OpenStack repository.

3https://github.com/Crystal-SDS
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7 Evaluation

Next, we evaluate a prototype of Crystal for OpenStack
Swift in terms of flexibility, performance and overhead.

Objectives: Our evaluation addresses the challenges
of Section 1.1 by showing: i) Crystal can define policies
at multiple granularities, achieving administration flexi-
bility; ii) The enforcement of storage automation filters
can be dynamically triggered based on workload condi-
tions; iii) Crystal achieves accurate distributed enforce-
ment of IO bandwidth SLOs on different tenants; iv) Fi-
nally, Crystal has low execution/monitoring overhead.

Workloads: We resort to well-known benchmarks
and replays of real workload traces. First, we use
ssbench [11] to execute stress-like workloads on
Swift. ssbench provides flexibility regarding the type
(CRUD) and number of operations to be executed, as
well as the size of files generated. All these parameters
can be specified in form of configuration “scenarios”.

To evaluate Crystal under real-world object storage
workloads, we collected the following traces4: ii) The
first trace captures 1.28TB of a write-dominated (79.99%
write bytes) document database workload storing 817K
car testing/standardization files (mean object size is
0.91MB) for 2.6 years at Idiada; an automotive com-
pany. i) The second trace captures 2.97TB of a read-
dominated (99.97% read bytes) Web workload consist-
ing of requests related to 228K small data objects (mean
object size is 0.28MB) from several Web pages hosted at
Arctur datacenter for 1 month. We developed our own
workload generator to replay a part of these traces (12
hours), as well as to perform experiments with control-
lable rates of requests. Our workload generator resorts to
SDGen [24] to create realistic contents for data objects
based on the file types described in the workload traces.

Platform: We ran our experiments in a 13-machine
cluster formed by 9 Dell PowerEdge 320 nodes (Intel
Xeon E5-2403 processors); 2 of them act as Swift proxy
nodes (28GB RAM, 1TB HDD, 500GB SSD) and the
rest are Swift storage nodes (16GB RAM, 2x1TB HDD).
There are 3 Dell PowerEdge 420 (32GB RAM, 1TB
HDD) nodes that were used as compute nodes to exe-
cute workloads. Also, there is 1 large node that runs the
OpenStack services and the Crystal control plane (i.e.,
API, controllers, messaging, metadata store). Nodes in
the cluster are connected via 1 GbE switched links.

7.1 Evaluating Storage Automation
Next, we present a battery of experiments that demon-
strate the feasibility and capabilities of storage automa-
tion with Crystal. To this end, we make use of synthetic
workloads and real trace replays (Idiada, Arctur). These

4Available at http://iostack.eu/datasets-menu.
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Figure 4: Enforcement of compression/encryption filters.

experiments have been executed at the compute nodes
against 1 swift proxy and 6 storage nodes.

Storage management capabilities of Crystal. Fig. 4
shows the execution of several storage automation poli-
cies on a workload related to containers C1 and C2 be-
longing to tenant T1. Specifically, we executed a write-
only synthetic workload (4PUT/second of 1MB objects)
in which data objects stored at C1 consist of random data,
whereas C2 stores highly redundant objects.

Due to the security requirements of T1, the first policy
defined by the administrator is to encrypt his data objects
(P1). Fig. 4 shows that the PUT operations of both con-
tainers exhibit a slight extra overhead due to encryption,
given that the policy has been defined at the tenant scope.
There are two important aspects to note from P1: First,
the execution of encryption on T1’s requests is isolated
from filter executions of other tenants, providing higher
security guarantees [7] (Storlet filter). Second, the ad-
ministrator has the ability to enforce the filter at the stor-
age node in order to do not overload the proxy with the
overhead of encrypting data objects (ON keyword).

After policy P1 was enforced, the administrator de-
cided to optimize the storage space of T1’s objects by
enforcing compression (P2). P2 also enforces compres-
sion at the proxy node to minimize communication be-
tween the proxy and storage node (ON PROXY). Note
that the enforcement of P1 and P2 demonstrates the fil-
ter pipelining capabilities of our filter framework; once
P2 is defined, Crystal enforces compression at the proxy
node and encryption at storage nodes for each object re-
quest. Also, as shown in Section 4, the filter framework
tags objects with extended metadata to trigger the reverse
execution of these filters on GET requests (i.e., decryp-
tion and decompression, in that order).

However, the administrator realized that the compres-
sion filter on C1’s requests exhibited higher latency and
provided no storage space savings (incompressible data).
To overcome this issue, the administrator defined a new
policy P3 that essentially enforces only encryption on
C1’s requests. After defining P3, the performance of
C1’s requests exhibits the same behavior as before the
enforcement of P2. Thus, the administrator is able to
manage storage at different granularities, such as tenant
or container. Furthermore, the last policy also proves the
usefulness of policy specialization; policies P1 and P2
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Figure 5: Dynamic enforcement of caching filter.

apply to C2 at the tenant scope, whereas the system only
executes P3 on C1’s requests, as it is the most special-
ized policy.

Dynamic storage automation. Fig. 5 shows a dy-
namic caching policy (P1) on one tenant. The filter im-
plements LRU eviction and exploits SSD drives at the
proxy to improve object retrievals. We executed a syn-
thetic oscillatory workload of 1MB objects (gray area) to
verify the correct operation of automation controllers.

In Fig. 5, we show the average latency of PUT/GET
requests and the intensity of the workload. As can be ob-
served, the caching filter takes place when the workload
exceeds 5 GETs per second. At this point, the filter starts
caching objects at the proxy SSD on PUTs, as well as
to lookup the SSD to retrieve potentially cached objects
on GETs. First, the filter provides performance benefits
for object retrievals; when the caching filter is activated,
object retrievals are in median 29.7% faster compared to
non-caching periods. Second, we noted that the costs
of executing asynchronous writes on the SSD upon PUT
requests may be amortized by offloading storage nodes;
that is, the average PUT latency is in median 2% lower
when caching is activated. A reason for this may be that
storage nodes are mostly free to execute writes, as a large
fraction of GETs are being served at the proxy’s cache.

In conclusion, Crystal’s control loop enables dynamic
enforcement of storage filters under variable workloads.
Moreover, native filters in Crystal allow developers to
build complex data management filters.

Managing real workloads. Next, we show how Crys-
tal policies can handle real workloads (12 hours). That is,
we compress and encrypt documents (P1 in Fig. 1) on a
replay of the Idiada trace (write-dominated), whereas we
enforce caching of small files (P2 in Fig. 1) on a replay
of Arctur workload (read-dominated).

Fig. 6(a) shows the request bandwidth exhibited dur-
ing the execution of the Idiada trace. Concretely, we exe-
cuted two concurrent workloads, each associated to a dif-
ferent tenant. We enforced compression and encryption
only on tenant T2. Observably, tenant T2’s transfers are
over 13% and 7% slower compared to T1 for GETs and
PUTs, respectively. This is due to the computation over-
head of enforcing filters on T2’s document objects. As a
result, T2’s documents consumed 65% less space com-
pared to T1 with compression and they benefited from
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Figure 6: Policy enforcement on real trace replays.

higher data confidentially thanks to encryption.
Fig. 6(b) shows tenants T1 and T2, both concurrently

running a trace replay of Arctur. By executing a dynamic
caching policy, T2’s GET requests are in median 1.9x
faster compared to T1. That is, as the workload of Arc-
tur is intense and almost read-only, caching was enabled
for tenant T2 for most of the experiment. Moreover,
because the requested files fitted in the cache, the SSD-
based caching filter was very beneficial to tenant T2. The
median write overhead of T2 compared to T1 was 4.2%,
which suggests that our filter efficiently intercepts object
streams for doing parallel writes at the SSD.

Our results with real workloads suggest that Crystal is
practical for managing multi-tenant object stores.

7.2 Achieving Bandwidth SLOs

Next, we evaluate the effectiveness of our bandwidth dif-
ferentiation filter. To this end, we executed a ssbench
workload (10 concurrent threads) in each of the 3 com-
pute nodes in our cluster, one of each representing an
individual tenant. As we study the effects of replication
separately (in Fig. 7(d) we use 3 replicas), the rest of
experiments were performed using one replica rings.

Request types. Fig. 7(a) plots two different SLO en-
forcement experiments on three different tenants for PUT
and GET requests, respectively (enforcement at proxy
node). Appreciably, the execution of Algorithm 1 ex-
hibits a near exact behavior for both PUT and GET re-
quests. Moreover, we observe that tenants obtain their
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Figure 7: Performance of the Crystal bandwidth differentiation service (SLOs per tenant are in MBps).

SLO plus an equal share of spare bandwidth, according
to the expected policy behavior defined by colored areas.
This demonstrates the effectiveness of our bandwidth
control middleware for intercepting and limiting both re-
quests types. We also observe in Fig. 7(a) that PUT band-
width exhibits higher variability than GET bandwidth.
Concretely, after writing 512MB of data, Swift stopped
the transfers of tenants for a short interval; we will look
for the causes of this in our next development steps.

Impact of enforcement stage. An interesting aspect
to study in our framework are the implications of enforc-
ing bandwidth control at either the proxies or storage
nodes. In this sense, Fig. 7(b) shows the enforcement
SLOs on GET requests at both stages. At first glance, we
observe in Fig. 7(b) that our framework makes it possi-
ble to enforce bandwidth limits at both stages. However,
Fig. 7(b) also illustrates that the enforcement on stor-
age nodes presents higher variability compared to proxy
enforcement. This behavior arises from the relationship
between the number of nodes to coordinate and the in-
tensity of the workload at hand. That is, given the same
workload intensity, a fewer number of nodes (e.g., prox-
ies) offers higher bandwidth stability, as a tenant’s re-
quests are virtually a continuous data stream, being eas-
ier to control. Conversely, each storage node receives a
smaller fraction of a tenant’s requests, as normally stor-
age nodes are more numerous than proxies. This yields
that storage nodes have to deal with shorter and discon-
tinuous streams that are harder to control.

But enforcing bandwidth SLOs at storage nodes en-
ables to control background tasks like replication. Thus,
we face a trade-off between accuracy and control that
may be solved with hybrid enforcement schemes.

Mixed tenant activity, variable file sizes. Next, we
execute a mixed read/write workload using files of dif-
ferent sizes; small (8MB to 16MB), medium (32MB to
64MB) and large (128MB to 256MB) files. Besides, to
explore the scalability, in this set of experiments we re-
sort to a cluster configuration that doubles the size of the
previous one (2 proxies and 6 storage nodes).

Appreciably, Fig. 7(c) shows that our enforcement
controller achieves bandwidth SLOs under mixed work-
loads. Moreover, the bandwidth differentiation frame-
work works properly when doubling the storage cluster
size, as the policy provides tenants with the desired SLO
plus a fair share of spare bandwidth, specially for T1
and T2. However, Fig. 7(c) also illustrates that the PUT
bandwidth provided to T1 is significantly more variable
than for other tenants; this is due to various reasons.
First, we already mentioned the increased variability of
PUT requests, apparently due to write buffering. Second,
the bandwidth filter seems to be less precise when limit-
ing streams that require an SLO close to the node/link ca-
pacity. Moreover, small files make the workload harder
to handle by the controller as more node assignments
updates are potentially needed, specially as the cluster
grows. In the future, we plan to continue the exploration
and mitigation of these sources of variability.

Controlling background tasks. An advantage of en-
forcing bandwidth SLOs at storage nodes is that we can
also control the bandwidth of background processes via
policies. To wit, Fig. 7(d) illustrates the impact of repli-
cation tasks on multi-tenant workloads. In Fig. 7(d), we
observe that during the first 60 seconds of this experi-
ment (i.e., no SLOs defined) tenants are far from hav-
ing a sustained GET bandwidth of ≈ 33MBps, meaning
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that they are importantly affected by the replication pro-
cess. The reason is that, internally, storage nodes trigger
hundreds of point-to-point transfers to write copies of al-
ready stored objects to other nodes belonging to the ring.
Note that the aggregated replication bandwidth within
the cluster reached 221MBps. Furthermore, even though
we enforce SLOs from second 60 onwards, the objectives
are not achieved —specially for tenants T2 and T3— un-
til replication bandwidth is under control. As soon as we
deploy a controller that enforces a hard limit of 5MBps
to the aggregated replication bandwidth, the SLOs of ten-
ants are rapidly achieved. We conclude that Crystal has
potential as a framework to define fine-grained policies
for managing bandwidth allocation in object stores.

7.3 Crystal Overhead

Filter framework latency overheads. A relevant ques-
tion to answer is the performance costs that our filter
framework introduces to the regular operation of the sys-
tem. Essentially, the filter framework may introduce
overhead at i) contacting the metadata layer, ii) inter-
cepting the data stream through a filter5 and iii) manag-
ing extended object metadata. We show this in Fig. 8.

Compared to vanilla Swift (SW), Fig. 8 shows that
the metadata access of Crystal incurs a median latency
penalty between 1.5ms and 3ms (MA boxplots). For 1MB
objects, this represents a relative median latency over-
head of 3.9% for both GETs and PUTs. Naturally, this
overhead becomes slightly higher as the object size de-
creases, but is still practical (8% to 13% for 10KB ob-
jects). This confirms that our filter framework minimizes
communication with the metadata layer (i.e., 1 query per
request). Moreover, Fig. 8 shows that an in-memory
store like Redis fits the metadata workload of Crystal,
specially if it is co-located with proxy nodes.

Next, we focus on the isolated interception of object
requests via Storlets, which trades off performance for
higher security guarantees (see Section 4). Fig. 8 illus-
trates that the median isolated interception overhead of
a void filter (NOOP) oscillates between 3ms and 11ms
(e.g., 5.7% and 15.7% median latency penalty for 10MB
and 1MB PUTs, respectively). This cost mainly comes
from injecting the data stream into a Docker container
to achieve isolation. We also may consider filter im-
plementation effects, or even the data at hand. To wit,
columns CZ and CR depict the performance of the com-
pression filter for highly redundant (zeros) and random
data objects. Visibly, the performance of PUT requests
changes significantly (e.g., objects ≥ 1MB) as compres-
sion algorithms exhibit different performance depending
on the data contents [24]. Conversely, decompression in

5We focus on isolated filter execution, as native execution has no
additional interception overhead.
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Figure 8: Performance overhead of filter framework
metadata interactions and isolated filter enforcement.
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Figure 9: Pipelining performance for isolated filters.

GET requests is not significantly affected by data con-
tents. Hence, to improve performance, filters should be
enforced in the right conditions.

Finally, our filter framework enables managing ex-
tended metadata of objects to store a sequence of data
transformations to be undone on retrievals (see Section
4). We measured that reading/writing extended object
metadata takes 0.3ms/2ms, respectively, which consti-
tutes modest overhead.

Filter pipelining throughput. Next, we want to fur-
ther explore the overhead of isolated filter execution.
Specifically, Fig. 9 depicts the latency overhead of pipel-
ing multiple NOOP Storlet filters. As pipelining is a new
feature of Crystal, it required a separate evaluation.

Fig. 9 shows that the latency costs of intercepting a
data stream through a pipeline of isolated filters is ac-
ceptable. To inform this argument, each additional fil-
ter in the pipeline incurs 3ms to 9ms of extra latency in
median. This is slightly lower than passing the stream
through the Docker container for the first time. The
reason is that pipelining tenant filters is done within the
same Docker container, so the costs of injecting the
stream into the container are present only once. There-
fore, our filter framework is a feasible platform to dy-
namically compose and pipeline several isolated filters.

Monitoring overheads. To understand the monitor-
ing costs of Crystal, we provide a measurement-based es-
timation of various configurations of monitoring nodes,
workload metrics and controllers. To wit, the monitor-
ing traffic overhead O related to |W | workload metrics is
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Figure 10: Traffic overhead of Crystal depending on the
number of nodes, controllers and workload metrics.

produced by a set of nodes N . Each node in N peri-
odically sends monitoring events of size s to the MOM
broker, which are consumed by |W | workload metric
processes. Then, each workload metric process aggre-
gates the messages of all nodes in N into a single mon-
itoring message. The aggregated message is then pub-
lished to a set of subscribed controllers C . Therefore,
we can do a worst case estimation of the total gener-
ated traffic per monitoring epoch (e.g., 1 second) as:
O = |W | · [s · (2 · |N |+ |C |)]. We also measured simple
events (e.g., PUT SEC) to be s = 130 bytes in size.

Fig. 10 shows that the estimated monitoring overhead
of a single metric is modest; in the worst case, a single
workload metric generates less than 40KBps in a 100-
machine cluster with |C | = 100 subscribed controllers.
Clearly, the dominant factor of traffic generation is the
number of workload metrics. However, even for a large
number of workload metrics (|W | = 20), the monitor-
ing requirements in a 50-machine cluster do not exceed
520KBps. These overheads seem lower than existing
SDS systems with advanced monitoring [33].

8 Related Work

SDS Systems. IOFlow [41], now extended as
sRoute [38], was the first complete SDS architecture.
IOFlow enables end-to-end (e2e) policies to specify the
treatment of IO flows from VMs to shared storage. This
was achieved by introducing a queuing abstraction at the
data plane and translating high-level policies into queu-
ing rules. The original focus of IOFlow was to enforce
e2e bandwidth targets, which was later augmented with
caching and tail latency control in [38, 39].

Crystal, however, targets a different scenario. Simply
put, it pursues the configuration and optimization of ob-
ject stores to the evolving needs of tenants/applications,
for it needs a richer data plane and a different suite of
management abstractions and enforcement mechanisms.
For example, tenants require mechanisms to inject cus-
tom logic to specify not only system activities but also
application-specific transformations on objects.

Retro [33] is a framework for implementing resource
management policies in multi-tenant distributed systems.
It can be viewed as an incarnation of SDS, because as

IOFlow and Crystal, it separates the controller from the
mechanisms needed to implement it. A major contribu-
tion of Retro is the development of abstractions to enable
policies that are system- and resource-agnostic. Crys-
tal shares the same spirit of requiring low develop effort.
However, its abstractions are different. Crystal must ab-
stract not only resource management; it must enable the
concise definition of policies that enable high levels of
programmability to suit application needs. Retro is only
extensible to handle custom resources.

IO bandwidth differentiation. Enforcing bandwidth
SLOs in shared storage has been a subject of intensive
research over the past 10 years, specially in block storage
[26, 27, 43, 45, 32, 41, 33]. For instance, mClock [27]
achieves IO resource allocation for multiple VMs at the
hypervisor level, even in distributed storage environ-
ments (dmClock). However, object stores have received
much less attention in this regard; vanilla Swift only pro-
vides a non-automated mechanism for limiting the “num-
ber of requests” [12] per tenant, instead of IO bandwidth.
In fact, this problem resembles the one stated by Wang et
al. [44] where multiple clients access a distributed stor-
age system with different data layout and access patterns,
yet the performance guarantees required are global. To
our knowledge, Wu et al. [45] is the only work address-
ing this issue in object storage. It provides SLOs in Ceph
by orchestrating local rate limiters offered by a modified
version of the underlying file system (EBOFS). How-
ever, this approach is intrusive and restricted to work
with EBOFS. In contrast, Crystal transparently intercepts
and limits requests streams, enabling developers to de-
sign new algorithms that provide distributed bandwidth
enforcement [37, 28].

Active storage. The early concept of active disk [36,
14, 31, 42], i.e., a HDD with computational capacity, was
borrowed by distributed file system designers in HPC en-
vironments two decades ago to give birth to active stor-
age. The goal was to diminish the amount of data move-
ment between storage and compute nodes [13, 9]. Pier-
nas et al. [35] presented an active storage implementation
integrated in the Lustre file system that provides flexible
execution of code near to data in the user space. Crystal
goes beyond active storage. It exposes through the fil-
ter abstraction a way to inject custom logic into the data
plane and manage it via policies. This requires filters to
be deployable at runtime, support sandbox execution [7],
and be part of complex workflows.

9 Conclusions

Crystal is a SDS architecture that pursues an efficient use
of multi-tenant object stores. Crystal addresses unique
challenges for providing the necessary abstractions to
add new functionalities at the data plane that can be im-
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mediately managed at the control plane. For instance,
it adds a filtering abstraction to separate control policies
from the execution of computations and resource man-
agement mechanisms at the data plane. Also, extend-
ing Crystal requires low development effort. We demon-
strate the feasibility of Crystal on top of OpenStack Swift
through two use cases that target automation and band-
width differentiation. Our results show that Crystal is
practical enough to be run in a shared cloud object store.
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