
This paper is included in the Proceedings of the
13th USENIX Conference on

File and Storage Technologies (FAST ’15).
February 16–19, 2015 • Santa Clara, CA, USA

ISBN 978-1-931971-201

Open access to the Proceedings of the
13th USENIX Conference on

File and Storage Technologies
is sponsored by USENIX

SDGen: Mimicking Datasets for Content
Generation in Storage Benchmarks

Raúl Gracia-Tinedo, Universitat Rovira i Virgili; Danny Harnik, Dalit Naor,
and Dmitry Sotnikov, IBM Research Haifa; Sivan Toledo and Aviad Zuck, Tel-Aviv University

https://www.usenix.org/conference/fast15/technical-sessions/presentation/gracia-tinedo

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  317

SDGen: Mimicking Datasets for Content Generation in Storage Benchmarks

Raúl Gracia-Tinedo
Universitat Rovira i Virgili (Spain)

raul.gracia@urv.cat

Danny Harnik, Dalit Naor, Dmitry Sotnikov
IBM Research-Haifa (Israel)

{dannyh, dalit, dmitrys}@il.ibm.com

Sivan Toledo, Aviad Zuck
Tel-Aviv University (Israel)

{stoledo, aviadzuc}@tau.ac.il

Abstract
Storage system benchmarks either use samples of pro-

prietary data or synthesize artificial data in simple ways
(such as using zeros or random data). However, many
storage systems behave completely differently on such
artificial data than they do on real-world data. This is the
case with systems that include data reduction techniques,
such as compression and/or deduplication.

To address this problem, we propose a benchmarking
methodology called mimicking and apply it in the domain
of data compression. Our methodology is based on char-
acterizing the properties of real data that influence the
performance of compressors. Then, we use these charac-
terizations to generate new synthetic data that mimics the
real one in many aspects of compression. Unlike current
solutions that only address the compression ratio of data,
mimicking is flexible enough to also emulate compres-
sion times and data heterogeneity. We show that these
properties matter to the system’s performance.

In our implementation, called SDGen, characteriza-
tions take at most 2.5KB per data chunk (e.g., 64KB)
and can be used to efficiently share benchmarking data
in a highly anonymized fashion; sharing it carries few or
no privacy concerns. We evaluated our data generator’s
accuracy on compressibility and compression times us-
ing real-world datasets and multiple compressors (lz4,
zlib, bzip2 and lzma). As a proof-of-concept, we in-
tegrated SDGen as a content generation layer in two pop-
ular benchmarks (LinkBench and Impressions).

1 Introduction

Benchmarking is a fundamental building block for re-
searchers and practitioners to measure the performance
of storage systems in a reproducible manner [35]. In-
deed, the research community has taken remarkable steps
towards accurately emulating observed workloads into
experimental assessments. A myriad of examples can be
found in the literature, such as benchmarks for file sys-
tems [7, 31], cloud storage [13, 16, 22] or databases [9,
15], to name a few.

However, most storage benchmarks do not pay partic-
ular attention to the contents generated during their exe-
cution [35] (see examples in Table 1). For instance, Im-
pressions [7] implements accurate statistical methods to
model the structure of a file system, but the contents of
files are by default zeros or statically generated by third-
party applications. Another example is OLTPBench [15],
which provides a rich suite of database workloads and
access patterns; however, the payload of queries is filled
with random data. Clearly these contents are not realis-
tic. Thus, the following question arises: does the content
matter to the performance analysis of systems? The an-
swer is a definitive yes when data reduction is involved.

Data reduction and performance sensitivity: To im-
prove performance and capacity, a variety of storage sys-
tems integrate data reduction techniques [11, 21, 23, 25,
27]. This can have two crucial effects on the performance
of the storage system: (i) When data is highly compress-
ible, the amount of bytes actually written to the storage
diminishes and performance can improve dramatically.
(ii) The running time of compression algorithms varies
greatly for different data types (e.g. [18]) and hence can
affect the overall throughput and latency of the system.
As a result, the performance of many systems with data
reduction techniques is extremely content-sensitive.

To illustrate this, we measured the transfer times of
ZFS, a file system with built-in compression [27, 38]. We
copied sequentially 1GB files filled with low (random)
and high (zeros) compressible data. The results in Fig. 1
support our claim: the transfer times of ZFS greatly vary
depending on the file contents. Thus, two executions of
the same benchmark may report disparate performance
results of ZFS, just depending on the data used.

Current solutions: One solution to benchmarking a
content-sensitive storage system is to use real life
datasets for executing the tests. However, this practice
is limiting due to the burden of copying large amounts of
data onto the testing system. Even more so, privacy con-

1

318  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

 














   

Figure 1: Sequential transfer times of ZFS depending on
file contents with and without compression.

cerns greatly inhibit this approach as end users typically
are unwilling to share their proprietary data [33].

Another practice which is gradually being adopted is
generating synthetic data with definable compressibility.
For example, VDBench [2], Fio [4] and LinkBench [9]
all offer synthetic data with tunable compression ratio.
This tuning is achieved by mixing incompressible and
highly compressible data at appropriate and variable pro-
portions. The shortcoming of this approach is that it only
considers a single dimension —that of compressibility.
It ignores the time required for actual compression and
does not support heterogeneity of the data within files.

To exemplify this, we tested data created in LinkBench
for its compression properties. Thus, using zlib we cal-
culated the compression ratio of the original chunks [10],
defined as original size

compressed size , to generate synthetic chunks of
similar compressibility with LinkBench. The results,
shown in Fig. 2, confirm that (i) compression ratios
are fairly accurate but, unlike what happens with real
data, insensitive to the compressor, and (ii) compression
times are very inaccurate —affecting the system’s per-
formance.

Thus, we face a situation where most storage bench-
marks generate unrealistic contents, whereas representa-
tive datasets cannot be shared with the community. This
reflects a need for a common substrate for generating re-
alistic and reproducible benchmarking data.

1.1 Our Contributions

We present Synthetic Data Generator (SDGen): an open
and extensible framework for generating realistic stor-
age benchmarking contents. SDGen is devised to pro-
duce data that mimics real-world data. In this paper we
focus on mimicking compression related properties, but
we view it as a wider framework that can be used for
other properties as well. The framework consists of a
pluggable architecture of data generators and character-
izations. Basically, characterizations capture properties
of datasets and are then used by data generators to cre-
ate arbitrary amounts of similar synthetic data. A salient
feature of SDGen is that researchers can share dataset
characterizations instead of actual contents to generate
realistic synthetic data in a reproducible manner.

The main features of our solution include:

    










































   






















Figure 2: Compression ratios of LinkBench synthetic
chunks for 4 compression engines (left). Compres-
sion times cumulative distribution function (CDF) of
LinkBench data vs Canterbury corpus data (right).

Mimicking compression: Our first contribution is to
identify the properties of data that are key to the per-
formance of compressors, and therefore, to the perfor-
mance of systems. Naturally, finding a universal solu-
tion to mimic data for all compressors is hard. The rea-
son is that different compressors are guided by distinct
heuristics in order to compress data. We therefore chose
to focus on the most common category of compressors
used in storage systems. Specifically, we target lossless
compression that is either based on byte level repetition
finding (Lempel-Ziv style algorithms [41, 42]) and/or on
entropy encoding (e.g. Huffman encoding [20]).

As a second contribution, SDGen generates data that
mimics both compression ratios and compression times
of the original dataset for several compression engines.
Moreover, our synthetic data exhibits similar variabil-
ity of these parameters compared to the original datasets.
Our tests exhibit that, on average, SDGen generates syn-
thetic data for which compression ratio deviates less than
10% and its processing time deviates less than 15% from
the original data. This was shown for disparate data types
and with several different compression engines (lz4,
zlib-1, zlib-6). For other compressors that vary in
their core methods (lzma, bzip2) the results are less
tight but also acceptable. We also verify the mimicking
effect of working with our synthetic data over ZFS.

Compact and anonymized representation: Our third
contribution is to design a practical and private way of
sharing benchmarking data. SDGen users can reproduce
a synthetic dataset by sharing a compact characterization
file, being agnostic to the original dataset contents. This
approach benefits from easy mobility coupled with the
privacy of not sharing actual data. The characterization
takes just 2.5KB per data chunk (for arbitrary chunk size,
e.g. 64KB). We also explore the option to use random
sampling to efficiently scan very large datasets, creating
a constant size characterization while maintaining high
accuracy in mimicking the entire dataset. In our tests,
the overall characterization does not to exceed 8.5MB
irrespective of the dataset size, which can be Terabytes.

2

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  319

Storage Domain Article/Benchmark Data Generation Method

File System

FileBench [5] (R) Internally, FileBench gets random offsets of the internal memory to fill write buffers.
Impressions [7] (C/D) Binary files are zeroed whereas text files are filled with a static list of words sorted by popularity

(English language). Impressions relies in third party applications to generate specific file types (mp3, jpeg).

Micro-benchmarks

IOzone [26] (R) Random data that can be specified with a ratio of change per-operation to specify deduplication.
VDBench [2] (M) Compression ratio supported by mixing random and zero data and block repetition for deduplication.
Bonnie++ [3] (R) Write/update operations are filled with non-initialized char arrays.
fio [4] (M) Mix of random and zero data to fill IO operations with compression defined data.

Database/KV Store
OLTP [15] (R) Payloads of queries are filled with random data.
LinkBench [9] (M) Static configuration of data compressibility that mixes new and existing data in each query.
YCSB [13] (C) The values of each table field are a string of ASCII characters of predefined length.

Cloud Storage CloudCmp [22] (R) Blobs for put operations are filled with random data.
Drago et. al. [16] (R) Benchmarking files are either random or with random words to emulate text.
COSBench [39] (R) API put operations are filled with random data.
ssbench [1] (C) Uploaded objects are filled with a single character (e.g. ‘A’).

Deduplication
Tarasov et. al. [33] (D) Generation of deduplication workloads based on a Markov model. Initial contents are delegated to a

first dataset image.
DEDISBench [9] (D) Initial contents are delegated to a first dataset image.

Generated contents are: (R)andom data, (C)onstant/zeros data, (M)ix of compressible and non-compressible data, (D)elegated to application/assumes initial dataset

Table 1: Data generation approaches for several widely adopted benchmarks in various storage domains.

Usability and integration: We plan to release SDGen
to the community1 as well as a set of public characteri-
zations for some popular data types. Users can either use
a public characterization, or create a new one in order to
mimic their proprietary data. As a proof-of-concept, we
also integrated SDGen as a data generation service into
two well-known benchmarks suites: Impressions [7] (file
system) and LinkBench [9] (social graph).

Paper organization: The rest of the paper is structured
as follows. Section 2 discusses related work on synthetic
data generation. Section 3 presents the SDGen architec-
ture and in Section 4 we present our data characterization
and generation methods for compression techniques. We
evaluate SDGen in sections 5 and 6. In section 7 we
describe the integration of SDGen with popular bench-
marking tools. We draw some conclusions in Section 8.

2 Related Work

Benchmarking storage systems has long been an impor-
tant research topic for the storage community. A vast
amount of microbenchmarks and domain-specific bench-
marks have been proposed in the last decade [5, 7, 9, 26,
28]. However, although these solutions provide flexible
and realistic [8, 32] workload modeling, they do not con-
sider the generated content as this is not their goal.

In Table 1, we summarize how many of these bench-
marks generate data as stated in the official documenta-
tion or as we inferred by inspecting their source code.
As mentioned in the introduction, some of these directly
offer compression ratio tuning and some offer simple im-
plementation also for deduplication ratio. We also refer
the reader to [35] for an excellent overview of the state-
of-the-art in storage benchmarking.

Tay [34] advocates for an application-specific bench-
marking approach [29]. This work aims to augment
an empirical dataset to an arbitrary size for database
benchmarking. It provides a theoretical study of how to
keep the internal database structure. For RDF databases

1Available at https://github.com/iostackproject/SDGen.

Schmidt et. al. [28] suggested to include document and
query generation modules based on a study of the DBLP
system. Similarly to LinkBench [9], they emulate the be-
havior of users to guide the workload execution. Adir et
al. presented an approach for benchmarking databases
in which data is generated according to the customer’s
specifications in order to match his proprietary settings
and data types [6]. They can optionally scan specified
database columns to collect statistics on used words and
use them in the benchmark.

Generating realistic contents for system benchmark-
ing seems to be gaining momentum in the field of big
data [36]. The authors of [36] propose BigDataBench,
a complete benchmark for systems such as Hadoop and
key-value stores. In particular, BigDataBench provides
a data generation module that emulates predefined data
types (e.g. text, graphs). In contrast, SDGen analyzes
any given dataset to generate similar synthetic data. That
is, a text file can be very compressible or not, depending
on its contents. SDGen is able to capture this character-
istic and generate synthetic data accordingly.

The closest work to the present paper we are aware of
is that of Tarasov et. al. [33], which identified the rele-
vance of generating realistic workloads for benchmark-
ing deduplication systems. They propose a framework to
capture and share the updates of datasets; traces repre-
senting update operations can be reproduced over other
datasets to emulate deduplication. Clearly, SDGen shares
the same spirit of [33]. However, in practice Tarasov
et. al. delegate the actual dataset contents to an initial
image/snapshot. SDGen fills this gap by providing syn-
thetic initial contents similar to the original ones, which
is a preliminary step to the deduplication benchmarking.

3 SDGen: Framework Architecture

SDGen is designed to capture characteristics of data that
can affect the outcome of applying data reduction tech-
niques on it. As we show next, SDGen works in two
phases: A priming scan phase which build data charac-
terizations to be used by a subsequent generation phase.

3

320  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

Original
Dataset

Chunk Scanner 1

Parallel Execution CC

Dataset
Character.

(DC)

3) Fill CCs
with scanned
features

1) Chunking
process

CONFIG. FILE
Scanners: Scanner

1, Scanner2..

Chunk Scanner n2) Scan
data

Dataset Scanner 1

CC

DataScanner

4) Build DC

Dataset Scanner n

Figure 3: SDGen dataset scanning and characterization.

3.1 Scan Phase: Characterizations
To capture the characteristics of data, SDGen implements
a two-level scan phase: chunk level and dataset level.

Many compression algorithms (e.g. lz4, zlib) par-
tition the input data stream into chunks, and apply com-
pression separately for every chunk [41]; such algorithms
try to exploit redundancy which stems from locality of
data (repetitions, common bytes) while minimizing the
size of their internal data structures. Therefore, a cen-
tral element in our design is the chunk characteriza-
tion (CC). A CC is a user-defined module that contains
the necessary information for every data chunk. SDGen
scans a given dataset by splitting its contents into chunks
(e.g., from 8KB to 128KB, configurable by the user) that
are characterized individually (step 1 and 2, Fig. 3). We
depict our CC design in Section 4.2.

In a higher level, SDGen builds dataset characteri-
zations (DC), which provide a more holistic characteri-
zation. In the current version of SDGen, DCs store the
deduplication ratio of the entire dataset as well as a list
of all the previously generated CCs.

To support the above scans, SDGen applies two
modules: Chunk scanners and Dataset scanners.
These modules are loaded from the configuration in
a manager class (DataScanner), which processes the
dataset, and concurrently uses it as input for the scanners
in order to build the characterization. The DataScanner
life-cycle appears in Fig. 3.

The scan phase ends by persistently storing a DC (step
4, Fig. 3). SDGen also includes a way of transparently
storing and loading DCs, enabling users to easily creat-
ing and sharing them.

3.2 Generation Phase
Once in possession of a DC, users may load it in SDGen
to generate synthetic data similar to the original dataset.

The heart of the generation phase is the generation al-
gorithm. This algorithm is designed by the user and re-
ceives as input a CC filled with the data characteristics
captured by chunk scanners (see Section 4.3). Since CCs
are read-only and independent of each other, the genera-

tion algorithm can utilize parallelism for faster data gen-
eration. A module called DataProducer orchestrates
the content generation process. The DataProducer
is also responsible for taking into account dataset-level
characteristics during the generation process. Currently,
this is mainly used for generating duplicated data. How-
ever, we concentrate on data compression, leaving the
analysis of deduplicated data for future work.

The DataProducer module generates data using two
API calls: getSynData() and getSynData(size).
The first call retrieves entire synthetic chunks with the
same size as the original chunk. This is adequate for
generating large amounts of content, such as file system
images. The second call specifies the size of the synthetic
data to be generated. This call is an optimization to avoid
wasting synthetic data in benchmarks that require small
amounts of data per operation (e.g. OLTP, databases).
Technically, successive executions of this method will re-
trieve subparts of a synthetic chunk until it is exhausted
and a new one is created.

3.3 Sampling at Chunk-level
SDGen generates a chunk characterization data structure
for each data chunk. However, the time to scan a very
large dataset can be prohibitively long and the size of
the characterizations can grow excessively. To remedy
this, we resort to sampling, i.e. scanning only a random
fraction of a given dataset.

The crux is that random sampling is a good estima-
tor for many properties of the data, and specifically for
properties that can be expressed by averages and sums
such as compression ratio or compression time. Harnik
et. al. [18] show that using random sampling on chunks
is a good estimator for compression ratio (within an addi-
tive percentage factor). The same also holds for estimat-
ing the fraction of data with specific compressibility or
within specific compression time limits. Note that com-
pression time of blocks is not bounded the way that com-
pression ratio is. Compression time typically has higher
variance, so typically its estimation is less tight than that
of compression ratio. Still we argue, and corroborate
through experimentation, that the sampling’s accuracy is
well within what is required for benchmarking.

The actual number of samples is a constant regard-
less of the size of the entire data set. In our tests we
took ∼ 3,500 chunks (this number meets accuracy guar-
antees provided in [18]2), where each chunk in the data
set is chosen with equal probability. This sampling can
be done in a simple manner when dealing with large files
or block devices, or by using the methodology of [17] for
the case of file systems and other complex structures. For

2Sample size is set by confidence and accuracy parameters. Accu-
racy (we use the value 0.05) measures the additive distance that the es-
timation can vary from the actual compression ratio, while confidence
(we use 10−6) bounds the probability of falling outside this accuracy
range (probability is taken over the randomness of the sampling).

4

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  321

each of the chosen chunks, a characterization is created
and stored. In the data generation phase, data is created
by taking characterizations in a round robin fashion. We
test the accuracy of this sampling strategy in Section 6.6.

3.4 How to Extend SDGen
SDGen enables users to integrate novel data generation
methods in the framework. To this end, one should fol-
low three steps:

1. Characterization: Create a CC extending the
AbstractChunkCharacterization class. This
user-defined characterization should contain the re-
quired information for the data generation process.

2. Scanners: Provide the necessary scanners to fill
the content of CCs and DCs during the scan
process. Chunk-level scanners should extend
from AbstractChunkScanner and implement the
method setInfo, to set the appropriate CC fields.

3. Generation: Design a data generation algorithm
according to the properties captured during the
scan phase. This algorithm should be embedded
in a module extending AbstractDataGenerator,
to benefit from the parallel execution offered by
DataProducer. Concretely, a user only needs to
override the fill(byte[]) method to fill with syn-
thetic data the input array.

SDGen manages the life-cycle of the user-defined
modules to scan/generate data, which are loaded from
a simple configuration file. Finally, SDGen consists of
5,800 lines of Java code, including the framework archi-
tecture, our generation methodology (plus Deflate al-
gorithm), the integration with LinkBench, and 200 lines
of C++ code for integration with Impressions.

4 Compression-oriented Synthetic Data

Creating an efficient and accurate mimicking method is a
non-trivial task (i.e. characterization, generation). In this
section, we describe the research insights that guided the
design of our method. We evaluate it in Section 6.

4.1 Generation Method Rationale
Mimicking data for compressors requires a basic under-
standing of how compressors work. In this work we tar-
get compressors that utilize repetition elimination to re-
duce data size. We also target compressors that use en-
tropy coding (such as Huffman codes), typically on top
of repetition elimination.

With this in mind, and based on empirical tests we
identified two main characteristics that affect the perfor-
mance and behavior of compression algorithms: repeti-
tion length distribution and frequencies of bytes.

10
0

10
1

10
2

10
0

10
2

10
4

10
6

Repetition length

F
re

q
u

en
cy

PDFs

Text (Calgary Corpus)

0 64 128 192 256

10
4

10
6

Byte value

F
re

q
u

en
cy

Figure 4: Repetition length distribution (left) and byte
frequency (right) in PDFs and text data.

In repetition elimination a data byte is either repre-
sented by the byte itself (termed literal) or as part of a
repetition. Each repetition is represented by its length
and a back pointer (distance parameter). The repetition
length is key since longer repetitions contribute to better
compression ratio as well as to significantly better per-
formance of compressors and decompressors. Note that
the typical distribution of repetitions tends to follow a
power-law [12], as observed in empirical tests (see Fig.
4 (left)). The majority of repetitions in such distributions
are short ones (< 10 bytes) and consequently, compres-
sion algorithms exert effort in order to exploit these small
repetitions, which in turn has an impact on performance.
On the other hand we found that the effect of repetition
distances on compression ratio and time is minor3.

Entropy encodings utilize non-uniformity of byte level
frequencies to encode data in a more compact represen-
tation at the bit level. In essence, the encoding associates
bit level identifiers to bytes so that the most frequent
bytes are represented by the shorter identifiers, saving
storage space. This process is mimicked by capturing
the distribution of bytes during the scan process. As we
observe in Fig. 4 (right), the skew in the distribution
of byte frequency changes significantly from text files to
random-like data (PDFs). This has a strong impact on
compressibility and may also impact the encoding pro-
cess speed. These observations guided the design of our
mimicking method for compression algorithms.

4.2 Data Characterization
To capture the aforementioned data characteristics, in our
method every Chunk Characterization (CC) contains:
Byte frequency histogram. We build a histogram that
relates the bytes that appear in a data chunk with their
frequencies, encoding it as a <byte, frequency> map
that we use to generate synthetic data that mimics this
byte distribution. This information is key to emulate the
entropy of the original data, among other aspects.
Repetition length histogram. Our aim is to mimic the
distribution of lengths of repetitions as they would be
found by a compressor. Note that different compressors
will find different repetitions, depending on how much
they invest in this task. Since there is no absolute answer
here, we take a representative example of a compressor

3An entire data window typically fits in the L1 cache and thus a
longer distance does not incur a performance penalty.

5

322  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

(default zlib’s Deflate algorithm) and work according
to repetitions found by this compressor. To encode the
repetitions as a histogram, we use a map whose keys rep-
resent the length of repetitions found in a chunk and the
values are frequencies of repetitions of a given length.
Compression ratio. Every CC also includes the com-
pression ratio of the original data chunk. In the gener-
ation phase, SDGen will try to create a synthetic chunk
with similar compressibility.

Note that the CC design only reveals statistical prop-
erties of data, but not data itself. This provides a high
degree of data privacy, as we discuss in Section 8.

Characterization space complexity: In our method, the
space complexity of a CC data structure is bounded irre-
spective of the scan chunk size. Specifically, to represent
a data chunk every CC contains 2 histograms whose data
is stored in a map data structure. In these maps, keys can
be encoded in byte data type (repetition length, bytes)
whereas values are expressed as integers (32-bit integer).
Therefore, in the worst case a single map requires 1,280
bytes (256 keys · 4 bytes/value). In addition, we add the
compression ratio (64-bit double), as well as the inher-
ited fields from ChunkCharacterization (size, 32-bit
integer and seed, 64-bit long).

The data chunk size can be arbitrarily large and can be
chosen according to the application at hand (see more in
Section 5). As a rule, we suggest to make it at least as
long as the size of a compressor’s compression window
(e.g., 32-128KB are typical granularities). Altogether, a
CC consumes at most 3.93% the space of a 64KB chunk.

4.3 Synthetic Content Generation
In order to generate dataSize bytes of synthetic data
(synData), we sequentially pick CCs from the list con-
tained in the dataset characterization. The scanned fea-
tures in every CC are the input values for our data gener-
ation algorithm, which is described in Algorithm 1.

Algorithm 1 generates synthetic data that mimics
some key properties of the original data (see Section 4.2):
Byte frequency: Algorithm 1 generates both unique and
repeated sequences with the function randomData that
outputs random bytes based on the histogram of byte fre-
quencies extracted from the original chunk (byteFrq).
Repetition length: We insert both random and repeated
data in sequences of length seqLen, whose values are
drawn by the repetition length histogram of the original
chunk (repLenFrq→seqLengths). Normally, to gener-
ate repeated data we use a single sequence (repSeq) of
length MAX LEN. Thus, every time we need to insert a
repetition, we select the first seqLen bytes of repSeq.
Compression ratio: For mimicking compressibility, Al-
gorithm 1 interleaves repeated or unique sequences of
bytes based on random trials (line 19) against the nor-
malized compression ratio (cr) of the original chunk4.

4Since we employ the zlib repetition finding algorithm, we also

Algorithm 1: High-level data generation algorithm
Data: dataSize, repLenFrq (Map), byteFrq (Map), cr
Result: synData

1 synData ← [];
2 uniqueBytes ← |byteFrq.keys()|;
3 /*No need for renewal by default*/
4 renewalRate ← ∞;
5 repCount ← 1;
6 i ← 0;
7 /*Special treatment for extreme data types*/
8 if uniqueBytes < MIN BY T ES then
9 renewalRate ← uniqueBytes

10 /*Initialize repetition and set it as prefix*/
11 repSeq ← randomData(byteFrq,MAX LEN);
12 /*Fill the repetitions distribution list*/
13 seqLengths ← getDescOrderSeqLen(repLenFrq);
14 previousWasRep ← False;
15 while i < dataSize do
16 if seqLengths = [] then
17 seqLengths ←

getDescOrderSeqLen(repLenFrq);

18 seqLen ← seqLengths.popFirst();
19 if randomTrial()< 1/cr then
20 synData[i : i+ seqLen]←

randomData(byteFrq,seqLen);
21 previousWasRep ← False;
22 else
23 /*Break to avoid repetition concatenation*/
24 if previousWasRep then
25 synData[i]← randomData(byteFrq,1);
26 i ← i+1;

27 /*Add repeated data*/
28 synData[i : i+seqLen]← repSeq[0 : seqLen];
29 /*Renew repetition if necessary*/
30 if (repCount mod renewalRate) = 0 then
31 repSeq ←

randomData(byteFrq,MAX LEN);

32 repCount ← repCount +1;
33 previousWasRep ← True;

34 i ← i+ seqLen;

Algorithm 1 includes several implementation nuances
resulting from our empirical insights. First, this al-
gorithm generates batches of repeated/unique byte se-
quences that are appended to the synthetic chunk in de-
creasing order by length (getDescOrderSeqLen in lines
13, 17). This choice allows algorithms with light repeti-
tion search (e.g. lz4) to find the correct synthetic rep-
etitions. We empirically found that compressors with
deeper repetitions search are insensitive to such ordering.

make use of the zlib compression ratio in our characterization. zlib
sets the maximum repetition length at 258 (MAX LEN, Algorithm 1).

6

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  323

Second, we avoid the concatenation of several repeti-
tions by adding a random separator byte after every rep-
etition (line 25). The reason is that two consecutive rep-
etitions of the same length may occur more than once.
Given that we normally use a single sequence as a source
of repetitions (repSeq), these concatenations would be
interpreted as a single longer repetition.

Note that our method is susceptible to mutual effects
caused by the interplay between repetitions and byte dis-
tribution. Repetitions can slightly skew the byte distribu-
tion while a short alphabet can also affect the repetition
counts (typically making them longer). In general, our
evaluation showed that such these interplays have a mi-
nor effect on other metrics. An exception is with data
formed with a very short alphabet (e.g. DNA sequenc-
ing)5 which require special treatment. Algorithms like
zlib exhibit degraded results on such data, probably be-
cause the internal Huffman tree should be constantly up-
dated for very short sequences. To overcome this prob-
lem, we refresh the repeated sequence often during the
generation process (renewalRate), to degrade the per-
formance of compressors as in the original data (line 9).

Albeit simple, in Section 6 we show that our method
provides an attractive trade-off between characterization
complexity and accuracy, for disparate datasets. We also
show that the accuracy of our synthetic data, in terms of
compression ratios and times, is because it mimics the
key properties defined in our characterizations (e.g., rep-
etition lengths, byte distribution).

5 Experimental Setup

For clarity, our evaluation is divided into two parts: i)
evaluation of the accuracy of the synthetic data generated
by SDGen (Section 6), and ii) analysis of the benefits of
SDGen integrated with real benchmarks (Section 7).

Methodology. To quantify the accuracy of the syn-
thetic data that SDGen generates, we proceeded as fol-
lows. First, we scanned an original dataset in fixed size
chunks (32KB) to build a full characterization file. For
practicality, the scan process was done over a single .tar
file containing all the files of a dataset. Subsequently, we
generated a synthetic file as large as the original one.

Then, we analyzed the behavior of compression en-
gines (compression ratios, times) on a dataset and per-
chunk basis. For inspecting chunks, we instantiated
a fresh compressor object to digest every data chunk.
Compressors were executed sequentially, to avoid arti-
facts and interferences in compression times. This fine-
grained perspective enabled us to capture the heterogene-
ity of datasets and the reaction of compression engines.
Dataset compression times are averages of 30 executions.

We compared SDGen with LinkBench data genera-
tion, which is a representative case of solutions to gener-
ate data with predefined compressibility by simply mix-

5We empirically found alphabet size 8 to be a good threshold value.

ing compressible/incompressible sequences (see Table
1). To this end, we used zlib to obtain the compression
ratio of the original chunks. We then generated similarly
compressible data chunks with LinkBench, using its de-
fault data generation mechanism. Note that this goes far
beyond the standard implementation, which targets a pre-
configured mean data compressibility.

Setting. The evaluation was performed using a server
running a Debian 7.4 operating system, equipped with an
i5-3470 processor (4 cores), 8GB DDR-3 memory and a
HDD of 7,200 rpm and 1TB of storage capacity. Since
SSDs are becoming increasingly popular for databases,
in the integration tests of LinkBench we used a Samsung
840 SSD with 250GB of storage capacity.

We ran our sampling experiments on an Ubuntu 14.04
server equipped with an Intel Xeon x5570 processor (4
cores) with 8GB RAM. We read the files from a local
disk, compressed them and stored them to an 8-disk raid-
10 array (10K RPM SAS drives), via a 4Gbit FC port.

5.1 Compression Similarity Metrics
We evaluate the accuracy of our synthetic generation
method by targeting several metrics. First and foremost,
we aim to hit the two main parameters that are relevant
to the performance of a system:

• Compression ratio: This metric refers to the ratio
between the size of the original data to the size of
the compressed data. Thus, given a compression
algorithm, we want that a chunk of synthetic data
will be as compressible as the original data chunk.

• Compression time: This metric captures the com-
putation time taken by a compression algorithm to
compress a single data chunk.

We also analyze two properties that helped us to devise
our generation algorithm. They can serve as good indica-
tors to the potential success of SDGen in mimicking data
for other compressors that are not tested here:

• Repetition length: We compare the length of repe-
titions in both the original and synthetic data.

• Entropy: It is often associated with the compress-
ibility of data [18] and quantifies how uniformly
distributed the bytes are within a data chunk. From
a sample X = {x0, ...,xn} of byte values with a prob-
ability mass function P(X), we calculate its entropy
H(X) =−∑P(xi)log2P(xi) [30]. In a byte basis, an
entropy value of 8 (highest) means that the data is
completely random and therefore not compressible.
A value of 0 means the opposite.

In addition, we performed several experiments over
ZFS, a well-known file-system with built-in compres-
sion to measure transfer throughput. These experiments
helped us to compare and evaluate the behavior of a real
system when using synthetic/original data [23].

7

324  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

Compression Ratio Compression Time (secs.)
Dataset Source zlib lz4 bzip2 lzma zlib lz4 bzip2 lzma

Calgary C.
OR 3.30 1.80 4.03 4.25 1.128 0.082 1.692 10.251
SD 3.15(−4.5%) 1.82(1.26%) 3.10(−23.29%) 3.58(−15.76%) 1.096(−2.8%) 0.072(−12.19%) 1.554(−8.15%) 9.064(−11.67%)
LB 3.70(12.3%) 2.79(55.39%) 3.8(5.48%) 3.71(−12.72%) 0.329(−70.8%) 0.043(−47.57%) 3.113(83.98%) 4.350(−57.56%

PDFs
OR 1.16 1.15 1.15 1.19 1.431 0.109 6.554 15.758
SD 1.13(−2.59%) 1.10(−4.34%) 1.10(−4.34%) 1.12(−5.88%) 1.551(8.38%) 0.117(7.33%) 6.514(−0.61%) 15.783(0.15%)
LB 1.46(25.85%) 1.12(−2.61%) 1.47(27.82%) 1.46(22.69%) 1.658(15.86%) 0.106(−2.75%) 5.086(−22.39%) 18.526(17.56%)

Media
OR 1.01 1.00 1.01 1.01 10.809 1.971 40.18 113.38
SD 1.00(−0.99%) 1.00(0%) 1.00(−0.99%) 1.00(−0.99%) 11.083(2.53%) 1.960(0.56%) 43.02(7.07%) 110.895(2.19%)
LB 1.30(28.71%) 1.00(0%) 1.30(28.71%) 1.29(27.72%) 11.601(7.32%) 1.941(1.52%) 30.12(−25.04%) 129.87(14.54%)

Silesia C.
OR 3.11 2.08 3.88 4.31 8.214 0.902 21.022 102.82
SD 2.82(−9.22%) 2.03(−2.40%) 2.73(−29.63%) 3.32(−22.97%) 8.826(7.45%) 0.833(−7.65%) 19.200(−8.67%) 82.33(−19.92%)
LB 3.57(14.79%) 2.69(29.32%) 3.65(−5.93%) 3.56(−17.40%) 4.002(−51.27%) 0.476(−47.23%) 35.202(67.45%) 52.07(−49.35%)

Sensor
OR 4.86 2.88 5.93 8.33 55.014 17.795 121.03 1238.3
SD 4.52(−6.99%) 2.70(−6.25%) 4.80(−19.05%) 5.67(−31.93%) 53.799(−2.21%) 16.643(−6.47%) 145.65(20.30%) 909.2(−26.57%)
LB 5.32(9.46%) 3.99(38.54%) 5.54(−6.57%) 5.34(−35.89%) 26.659(−51.54) 12.486(−29.83) 304.96(151.9%) 381.6(−69.18%)

OR=Original Dataset, SD=SDGen Synthetic Data, LB=LinkBench Synthetic Data. Relative errors compared to OR appear in parentheses.

Table 2: Dataset-level compression ratios and times of SDGen and LinkBench data (non-sampling datasets).

5.2 Datasets and Compression Engines
Next, we briefly describe the datasets used to assess the
accuracy of our data generation method. Note that we
stress the importance for a method to be accurate in the
presence of diverse and heterogeneous datasets.

• Calgary/Canterbury corpus (Text): Collection of
text and binary data files, commonly used for com-
paring data compression algorithms (18.5MB).

• PDFs: Proceedings of the last 5 editions of the
Usenix FAST conference (48.7MB).

• Silesia corpus: Standard set of files that covers the
typical data types used nowadays [14] (211.9MB).

• Media: Media files collected from the home direc-
tories of 4 IBM engineers including photos (.jpg),
music (.mp3) and video (.avi) (300.3MB).

• Sensors dataset: GPS trajectory dataset collected
in Microsoft Research Geolife project by 182 users
during three years [40](1.7GB).

• Mix (sampling test only): A private collection of
mix of files of various data types e.g. html, xml, txt,
database files and VM images (14GB).

• Enwiki9 (sampling test only): Common measuring
stick for compression methods consisting of the first
109 bytes of the English Wikipedia [37].

We measured the accuracy of our synthetic data mim-
icking these datasets by analyzing the behavior of 4 com-
pression engines: lz4, zlib (level 1, 6), bzip2 and
lzma. We used the compressors’ default implementa-
tion available on Unix distributions and the analogous
Java libraries included in SDGen. It is worth mention-
ing that these algorithms belong to different families and
adopt disparate heuristics to find redundancies within a
data stream. This can give a sense about the universal-
ity of our generation method. Specifically, lz4 targets
speed over compression ratio and has repetition elimina-
tion only. zlib is medium speed, adopting Huffman en-
coding in addition. bzip2 and lzma target compression

ratio over speed deploying various advanced, yet time
consuming methods such as the Burrows Wheeler trans-
form [24] (bzip2) or a large dictionary based variant of
LZ77 (lzma) .

6 Evaluation

Next, we describe the results comparing original and
synthetic (SDGen, LinkBench) data using the aforemen-
tioned metrics. We compare the results of two compres-
sion engines that we specifically target (zlib, lz4) with
other two of distinct families (bzip2, lzma).

6.1 Compression ratio
In Table 2 and Fig. 5, we compare the obtained com-
pression ratios of the original and synthetic datasets for
all compression engines at both dataset and chunk levels.

Table 2 shows that SDGen closely mimics the com-
pressibility of real datasets for the targeted engines
(zlib, lz4). For zlib and lz4, SDGen does not de-
viate more than 10% in compression ratio compared to
the real data. This demonstrates that our synthetic data
is sensitive to the algorithm; that is, our synthetic data
exhibits the same behavior than the real data, depending
on the compression engine used. This confirms that ana-
lyzing the structure of data is an appropriate approach to
generate realistic synthetic data.

At the dataset level, we observe that SDGen is less ac-
curate for the non-targeted compressors (bzip2, lzma).
Surprisingly, this contrasts with Fig. 5 that shows how
SDGen closely reproduces the compression ratio distri-
butions of real dataset chunks. The reason for this be-
havior is related with the chunk size.

That is, zlib and lz4 digest data in small chunks (e.g.
32KB) to reduce the size of their internal data structures.
Conversely, bzip2 and lzma digest data in window sizes
that can reach 900KB and 1GB, respectively [23]. We
do not focus on scanning data features in this broader
scope. This encourages us to research new scanners at
larger granularities to cope with other compressors.

8

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  325

100 101 1020

0.2

0.4

0.6

0.8

1 zlib

Chunk compression ratio

C
D

F

PDF (orig.)
PDF (SDGen)
Calgary (orig.)
Calgary (SDGen)

100 101 1020

0.2

0.4

0.6

0.8

1

Chunk compression ratio

C
D

F

lz4

PDF (orig.)
PDF (SDGen)
Calgary (orig.)
Calgary (SDGen)

100 101 1020

0.2

0.4

0.6

0.8

1 bzip2

Chunk compression ratio

C
D

F

PDF (orig.)
PDF (SDGen)
Calgary (orig.)
Calgary (SDGen)

100 101 1020

0.2

0.4

0.6

0.8

1 lzma

Chunk compression ratio

C
D

F

PDF (orig.)
PDF (SDGen)
Calgary (orig.)
Calgary (SDGen)

Figure 5: Original vs SDGen per-chunk compression ratio distributions for various datasets and compressors.

0 2 4 6
x 106

0

0.2

0.4

0.6

0.8

1 zlib

Chunk compression time (ns)

C
D

F

PDF (orig.)
PDF (SDGen)
Calgary (orig.)
Calgary (SDGen)

0 1 2 3
x 105

0

0.2

0.4

0.6

0.8

1 lz4

Chunk compression time (ns)

C
D

F

PDF (orig.)
PDF (syn.)
Calgary (orig.)
Calgary (syn.)

0 2 4 6 8
x 106

0

0.2

0.4

0.6

0.8

1 bzip2

Chunk compression time (ns)

C
D

F

PDF (orig.)
PDF (SDGen)
Calgary (orig.)
Calgary (SDGen)

0 1 2 3 4
x 107

0

0.2

0.4

0.6

0.8

1 lzma

Chunk compression time (ns)

C
D

F

PDF (orig.)
PDF (SDGen)
Calgary (orig.)
Calgary (SDGen)

Figure 6: Original vs SDGen per-chunk compression time distributions for various datasets and compressors.

  
























  

  
























  

Figure 7: Sequential write throughput of ZFS depend-
ing on data type. Clearly, ZFS behaves similarly when
processing SDGen synthetic data and the original one.

In general, the one-dimensional data generation ap-
proach of LinkBench deviates importantly from the com-
pressibility of the actual data, even though LinkBench
datasets were generated chunk-by-chunk to capture the
heterogeneity (Table 2). The reason is that the propor-
tion of compressible/incompressible data is determined
by one algorithm in the generation phase (zlib). Such a
synthetic data becomes inaccurate when compressed by
other engines, compared to the original dataset.

6.2 Compression time
Table 2 shows that SDGen achieves high accuracy mim-
icking compression times for zlib and lz4. At the
dataset level, our synthetic data does not deviate by more
than 13% in compression times compared to the origi-
nal data. At chunk level, on average the 70% of SDGen
chunks deviate less than 20% in terms of compression
time (Fig. 6) w.r.t. the real dataset —it is harder to be
accurate for lz4 since it is the fastest compressor. Ta-
ble 2 also illustrates that for the non-targeted compres-
sors (bzip2, lzma) our synthetic data does not deviate
by more than 26%, which we consider acceptable.

Note that in the Calgary corpus there is a particular
file that accounts for the 23% of samples, which exhibit
a much higher compression time for zlib (Fig. 6, left).

This file is the DNA sequencing of the E. coli bacte-
ria. The particularity of this file is that it is formed by
very few distinct bytes (4 in most chunks, since DNA se-
quences are composed by 4 nucleotides) and very short
repetitions. This makes compression algorithms that use
Huffman codes to perform worse, since the Huffman
tree should be constantly updated for only very short
sequences. Our generation algorithm detects these sit-
uations and reacts by increasing the repeated sequence
renewal rate. Thus, the performance of Huffman codes
becomes also worse, similar to the original data.

Unsurprisingly, Table 2 shows that LinkBench
datasets deviate importantly from the compression times
of real datasets. Such a deviation —in many cases higher
than 50%— may induce important impact on the perfor-
mance of a storage system with built-in compression.

6.3 Performance of ZFS

We want to stress the importance of using an appropriate
data generation method in a real system. Thus, we aug-
mented 3 datasets (PDFs, Calgary and Silesia) by repli-
cating them to be 1GB in size. Then, we copied 50 times
each from memory into a ZFS partition with compres-
sion enabled (lzjb, gzip) capturing the sequential write
throughput. We repeated the experiment with two syn-
thetic datasets: i) a dataset generated with LinkBench
creating chunks of the same compressibility than the
original one, and ii) a dataset generated with our method.

In Fig. 7, our synthetic data makes the system to
exhibit virtually the same write throughput as the orig-
inal dataset. That is, the difference in throughput of
ZFS between the original dataset and our data is at most
1.9% in average for lzjb and gzip. However, consid-
ering datasets generated with LinkBench, ZFS exhibits
a variation in write throughput between +12.5% and
+19% in most cases w.r.t. the original dataset. Interest-

9

326  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

100 101 102 103100

102

104

106 PDFs

Repetition length

Fr
eq

ue
nc

y

100 101 102 103100

102

104

106 Calgary corpus

Repetition length

Fr
eq

ue
nc

y

Original Data
SDGen Data

Original Data
SDGen Data

Figure 8: Repetition length distributions of SDGen and
original datasets.

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Entropy bits

C
D

F

PDF Original

PDF SDGen Synthetic

Sensor Network Original

Sensor Network SDGen Synthetic

Text Original

Text SDGen Synthetic

Figure 9: Entropy CDF of SDGen and original data.

ingly, irrespective of the dataset, ZFS achieves a similar
throughput writing LinkBench data. The reason is that
LinkBench generates data that is easy to compress for
most algorithms, for a wide range of compression ratios.
gzip (as zlib in Fig. 6) performs worse digesting

the Calgary corpus. Our method handles this behavior,
whereas the LinkBench data makes ZFS write through-
put to deviate by +44% compared to the original dataset.

Therefore, compared with current approaches, our
method provides a much more realistic substrate to
benchmark storage systems with compression built-in.

6.4 Similarity of Mimicked Characteristics

To emulate compression ratios and times, our mimicking
method captures the repetition length distribution and the
frequencies of bytes of the original data (Section 4). Now,
we inspect how close SDGen mimics these properties.

Repetition length. Fig. 8 shows the distribution of
repetition lengths for both original and synthetic datasets
(PDFs, text). We observe that the repetitions in both
cases are similar in terms of distribution shape and abso-
lute frequency numbers. This characteristic plays a key
role on the accuracy of the synthetic chunks compression
ratios and times, suggesting that mimicking it is an effec-
tive way of generating realistic data for compression.

Entropy. In Fig. 9 we depict the entropy distribu-
tion of original and synthetic chunks for two datasets.
As we can infer, the entropy distribution of the original
dataset is roughly followed by the synthetic one. The
reason for this is that we capture the byte histogram dis-
tribution in original chunks to generate bytes according
to it. This property is also interesting because our syn-
thetic data would be useful for techniques that estimate
the compressibility of data based on entropy [18].

zlib lz4 bzip2 lzma
100

101

102 Compression at 16KB (Calgary corpus)

C
om

pr
es

si
on

 ra
tio

zlib lz4 bzip2 lzma
104

105

106

107

108 Compression at 16KB (Calgary corpus)

C
om

pr
es

si
on

 ti
m

e
(n

s)

Original Data
SDGen Data

zlib lz4 bzip2 lzma
104

105

106

107

108 Compression at 64KB (Calgary corpus)

C
om

pr
es

si
on

 ti
m

e
(n

s)

zlib lz4 bzip2 lzma
100

101

102 Compression at 64KB (Calgary corpus)

C
om

pr
es

si
on

 ra
tio

Figure 10: Compression times and ratios of 16KB and
64KB synthetic chunks mimicking Calgary Corpus data.
Original data was scanned at 32KB chunk granularity
(boxplot circles represent mean values).

6.5 Chunk Size Sensitivity
We obtained very similar results when varying the chunk
size from 8KB to 128KB, which are the typical size lim-
its for compression (16KB for MySQL, 8KB to 128KB
for ZFS). However, as the scan chunk size gets smaller,
the characterization file grows linearly. Normally, com-
pression algorithms tend to avoid small window sizes
since data compressibility decays. Thus, we recommend
to scan data in chunks of 16KB to 64KB.

In SDGen we scan a dataset and generate data with
a configurable chunk size. A question that arises here
is: how does the synthetic data behave when it is com-
pressed to different granularities than the one used in the
scan/generation process? To answer this question, we
compressed the Calgary corpus and the synthetic dataset
at 16KB and 64KB granularities (Fig. 10). Note that the
synthetic dataset has been scanned/generated at 32KB
granularity. We selected the Calgary corpus since it is
very heterogeneous (compression times, ratios), potenti-
ating differences depending on the scan granularity.

Interestingly, in Fig. 10 we observe that our method is
not sensitive to the scan granularity. That is, for both scan
chunk sizes, the compression times and ratios of com-
pression algorithms follow a similar trend. Although the
distribution tails are harder to model, we observe that in
most cases the boxplots for both datasets present a sim-
ilar shape. Therefore, we conclude that we can safely
mimic a dataset using granularities that are different than
the one used during the original data scan phase, while
maintaining the original content behavior.

6.6 Sampling: Scaling Characterizations
Previously, we performed full scans on the original data
(32KB chunks). Full dataset scans let us reproduce the
compressibility of data, and even the locality of compres-

10

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  327

Dataset Compressor
Compression Time (sec.) Decompression Time (sec.) Compression Ratio

Orig. SDGen Zero Rand. Orig. SDGen Zero Rand. Orig. SDGen Zero Rand.

Mix
gzip-6 443.47 451.98 136.48 589.82 97.30 95.74 72.52 95.64 1.86 1.82 1030.5 1.00
gzip-1 378.28 380.45 136.34 574.46 88.30 87.21 48.64 96.32 1.84 1.82 229.3 1.00
lz4 161.82 143.21 137.15 139.93 42.11 43.50 5.98 66.63 1.79 1.78 254.7 1.00

Enwiki9
gzip-6 50.31 57.16 9.41 39.32 8.20 9.05 4.84 6.32 3.09 2.83 1030.5 1.00
gzip-1 22.08 22.92 9.45 37.93 9.18 9.27 6.05 3.23 2.64 2.54 229.3 1.00
lz4 10.00 9.60 9.40 9.39 3.20 2.93 0.41 3.92 1.97 1.91 254.7 1.00

Orig=Original Dataset, SDGen=SDGen Dataset, Zero=Zero Dataset, Rand=Random Dataset.

Table 3: Dataset-level compression ratios and times of SDGen data using sampling in the scan process.

sion with high precision. In fact, this can be achieved
with moderate characterization space requirements. For
instance, compared to the original datasets, the size of
characterization files are 4.08% (Silesia corpus), 2.14%
(Calgary corpus), and 6.38% (PDFs) —the theoretical
maximum is 7.86% for a 32KB chunk. However, con-
sidering large datasets, the size of characterizations and
the memory requirements for the scan may be too high.

Next, we want to inspect the accuracy of our synthetic
data when we only use a subset of data in the scan pro-
cess. To this end, we make use of real datasets that are
large enough to justify the use of sampling. As described
in Section 3.3, we use characterizations formed by 3,500
samples. We also tested a larger chunk size (128KB).

Table 3 shows the compression/decompression times,
as well as the compression ratios for the real and syn-
thetic datasets. “Random” and “Zeros” are datasets as
large as the real one, whose content is self-explanatory.

In general, we see in Table 3 that our sampling ap-
proach is an effective way of mimicking large datasets.
That is, SDGen datasets do not deviate more than 13.6%
and 10% in compression and decompression times, re-
spectively. SDGen compression ratios are also accurate.

Interestingly, we find that decompression times are
similar in both original and SDGen datasets; this suggest
that if the synthetic data mimics correctly compression
times, decompression times become also mimicked.

The most relevant point in this experiment is the size
of the characterizations needed to achieve these results.
That is, the Mix dataset (14GB) characterization file pro-
duced by SDGen was only 7.3MB in size (0.052%). We
conclude that SDGen provides a novel and attractive way
of sharing large datasets with very low data exchange,
high mimicking accuracy and preserving data anonymity.

6.7 Data Generation Throughput
We evaluate the throughput of SDGen generating syn-
thetic data with our method. First, SDGen utilizes the
available cores to increase the generation throughput
(Fig. 11). That is, making use of 4 cores instead of 1, the
throughput of SDGen is x3.56 and x3.45 times higher in
the case of text and media data, respectively.

Second, we noticed that the generation throughput
varies depending on the data type being generated. This
effect is caused by the behavior of our data generation
method. That is, Algorithm 1 is faster generating highly
compressible data since it reuses repetitions more fre-

1 2 3 4
0

10

20

30

40

50

60
SDGen data generation throughput

Generation threads

M
B

y
te

s/
se

c.

Text Data (high compression)

Media Data (low compression)

Figure 11: Throughput of our data generation algorithm
integrated in SDGen depending on the data type.

quently to generate synthetic chunks. In the case of
random-like data, Algorithm 1 performs more random
decisions to generate new bytes, which is slower than
copying an existing sequence. Note that several SDGen
servers can run in parallel to increase throughput.

7 Integration with Benchmarks

7.1 LinkBench
LinkBench [9] is a graph benchmarking tool developed
by Facebook. LinkBench provides performance predic-
tions on databases used for persistent storage of Face-
book’s production data. We integrated SDGen with
LinkBench to explore the benefits of our synthetic data.

Integration. Internally, LinkBench permits to adjust
the compressibility of data used in every experiment run.
To decouple the actual data generation from the bench-
mark execution, LinkBench provides an interface called
DataGeneration. We followed this contract by creating
an adapter class which transforms LinkBench calls into
API calls offered by our data generation system. This
clean design permits a user to choose the way synthetic
data is generated from the configuration file.

Setting. We executed LinkBench on top of MySQL
5.5 and ZFS with compression enabled (lzjb and gzip).
We evaluated the differences in performance that are
measured by LinkBench when query payloads are filled
with realistic and non-realistic synthetic data given a tar-
get dataset (text, Calgary corpus). We filled query pay-
loads with random offsets of datasets loaded in memory
prior to the benchmark execution, to avoid the potential
bias caused by the generation overhead.

We executed a write-dominated workload to observe
the effects of content on insert latencies. We evaluated
the performance of inserts due to their higher cost com-
pared to reads, since they cannot be cached. We executed

11

328  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

0 2 4 6 8 10 12

x 10
5

0

0.2

0.4

0.6

0.8

1
LinkBench 16KB insert latency − ZFS (gzip) over SSD

Insert latency (Microseconds)

C
D

F
No Comp.

Zero data

Random data

Text data

Syn. data

0 1 2 3 4 5 6 7

x 10
5

0

0.2

0.4

0.6

0.8

1
LinkBench 16KB insert latency − ZFS (lzjb) over SSD

Insert latency (Microseconds)

C
D

F

No Comp.

Zero data

Random data

Text data

Syn. data

Figure 12: Insert latency of LinkBench for 16KB pay-
loads on top of ZFS with gzip and lzjb compression.

LinkBench with 100 parallel threads for 30 minutes, re-
sulting in various millions of inserts (18GB database).
We used a Samsung 840 SSD as storage layer (250GB).

Results. In Fig. 12, we illustrate the insert latency
that LinkBench experiences depending on the payload
content. First, we want to emphasize the benefits of SD-
Gen compared to use non-realistic data. Observably, the
insert latency distributions are very similar for both the
Calgary corpus and the corresponding SDGen synthetic
dataset. This probes that SDGen produces representative
and reproducible data, since the Calgary corpus charac-
terization is ready to be shared and serve others.

Furthermore, we observe that employing naive con-
tents may lead to disparate performance results. For in-
stance, the median insert time of LinkBench is −55%
filling payloads with zeros than using the corpus (gzip).
lzjb also presents such performance variations, but they
are less significant since the algorithm is much faster.

7.2 Impressions
File systems are an important field to apply data reduc-
tion techniques. Thus, we integrated our data generation
system in the Impressions file system benchmark [7].

Integration. The integration has been done as fol-
lows. We set up a named pipe during the initial phase
of the execution of Impressions to connect with SDGen.
From that point onwards, Impressions delegates the gen-
eration of file contents to SDGen by writing in the pipe
the size and the canonical path of the files to be created.

Additionally, we added a special type of dataset char-
acterization (DC) in SDGen called file system character-
ization (Fig. 13). A file system characterization inter-
nally contains a set of regular DCs, each one associated
to what we call a file category. File categories repre-
sent a group of file types —based on their extension—
that usually contain similar contents. For instance, we



Binary




Random




Text












Figure 13: Integration of SDGen with Impressions.

can define a file category called “random data” contain-
ing compressed/encrypted files, such as .zip, .mp3 and
.jpg. We found this approach very convenient to treat
the vast amount of existing file extensions, also produced
by Impressions. We provide an initial set of file cate-
gories grouping the most popular file extensions6.

To illustrate this, we recommend to see Fig. 13. In
this figure, Impressions notifies SDGen that a new file
called /Impress/dir1/1.txt of size 50KB should be
created. SDGen looks up for the file extension .txt,
which belongs to the “Text” file category. Subsequently,
SDGen generates the file content resorting to the DC of
this file category, which should be built by scanning rep-
resentative files with the corresponding extensions.

Open Trial. We release a ready-to-use trial of SDGen
integrated with Impressions. In the SDGen webpage,
we release various DCs to be loaded into the file system
characterization, which internally associates them to the
appropriate file category. These DCs come from scan-
ning file systems of our company engineers (text, images,
etc.). We also provide the modified code of Impressions,
as well as the execution instructions.

8 Discussion and Conclusions

A word on dataset privacy leakage: One of the main
concerns in data sharing, or lack thereof, is privacy lim-
itations on proprietary data. Our method relieves many
of the privacy concerns and allows free sharing of data
since no actual data is shared. More precisely, the data
being created is a random combination of bytes, albeit
with specific probabilities on byte occurrences and repe-
titions. It should be noted, however, that the characteri-
zations are not entirely free of information. That is, the
frequencies of bytes are revealed and these can actually
tell us information about the data at hand. For instance,
using such information one can distinguish the underly-
ing data type (e.g. text, image).

Inherently, the mimicking approach is susceptible to
this sort of “higher order information leakage” since the
properties we are characterizing are per se an indication
about the data at hand. However, we believe that this
novel way of sharing provides an attractive trade-off be-
tween dataset privacy and benchmarking accuracy.

Beyond compression: In this paper we focused on
compression related properties, but view mimicking as

6http://en.wikipedia.org/wiki/List_of_file_formats.

12

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  329

a general approach of data generation for benchmark-
ing content-sensitive systems. One obvious extension is
deduplication which is extremely data sensitive. Dedu-
plication is more challenging for a number of reasons: (i)
It is a global dataset property, rather than being dictated
by local behavior of data. For this reason, fast scanning
using sampling is much harder to achieve when dedu-
plication is involved [19]; and (ii) deduplication ratios
achieved in storage systems are typically affected by the
order and timing in which data was written to the system
(and not only by the content). Such a time based depen-
dency is very hard to mimic. Our future research includes
extending SDGen to also mimic data de-duplicability.

Conclusions: Most workload generators for bench-
marks do not focus on the contents used in their execu-
tion, and they typically generate unrealistic data (zeros,
random data). Storage systems with built-in compression
behave differently on such naively-synthesized data than
they do on real-world data. Current solutions create data
with variable compression ratio, but they ignore other
properties such as compression time and heterogeneity,
which are critical to the performance of these systems.

We have therefore extended the basic methodology
that underlies workload generators to the data itself. Cur-
rent workload generators try to mimic real-world situa-
tions in terms of files, offsets, read/write balance and so
on; we have designed and implemented an orthogonal
component, called SDGen, to generate data that mimics
the compressibility and compression times of real data.

For mimicking real-world data SDGen produces char-
acterizations that are compact, sharable and essentially
completely anonymized. We plan to release both SDGen
and the characterizations that we have produced with it.
We hope that others will use these tools and that others
will share additional characterizations of data with the
systems research community.

Acknowledgements

We first thank our shepherd Xiaosong Ma and anony-
mous reviewers. This work has been partly funded
by the EU projects CloudSpaces (FP7-317555) and
IOStack (H2020-644182) and Spanish research projects
DELFIN (TIN-2010-20140-C03-03) and Cloud Ser-
vices and Community Clouds (TIN2013-47245-C2-2-R)
funded by the Ministry of Science and Innovation.

References

[1] Ssbench: Benchmarking tool for swift clusters.
https://github.com/swiftstack/ssbench.

[2] Vdbench users guide.
www.oracle.com/technetwork/server-
storage/vdbench-1901683.pdf.

[3] Bonnie++. http://www.coker.com.au/bonnie++/,
2001.

[4] Fio. http://freecode.com/projects/fio, 2005.

[5] Filebench. http://sourceforge.net/projects/filebench/,
2008.

[6] ADIR, A., LEVY, R., AND SALMAN, T. Dynamic
test data generation for data intensive applications.
In 7th International Haifa Verification Conference,
HVC 2011 (2011), pp. 219–233.

[7] AGRAWAL, N., ARPACI-DUSSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. Generating realis-
tic impressions for file-system benchmarking. In
USENIX FAST ’09 (2009), pp. 125–138.

[8] ANDERSON, E., KALLAHALLA, M., UYSAL, M.,
AND SWAMINATHAN, R. Buttress: A toolkit for
flexible and high fidelity i/o benchmarking. In
USENIX FAST’04 (2004), pp. 4–4.

[9] ARMSTRONG, T. G., PONNEKANTI, V.,
BORTHAKUR, D., AND CALLAGHAN, M.
LinkBench: a database benchmark based on the
facebook social graph. In ACM SIGMOD’13
(2013), pp. 1185–1196.

[10] BELL, T. Canterbury corpus.
http://corpus.canterbury.ac.nz, 1997.

[11] BURROWS, M., JERIAN, C., LAMPSON, B., AND
MANN, T. On-line data compression in a log-
structured file system. In ACM ASPLOS’92 (1992),
pp. 2–9.

[12] CLAUSET, A., SHALIZI, C. R., AND NEWMAN,
M. E. Power-law distributions in empirical data.
SIAM review 51, 4 (2009), 661–703.

[13] COOPER, B. F., SILBERSTEIN, A., TAM, E., RA-
MAKRISHNAN, R., AND SEARS, R. Benchmark-
ing cloud serving systems with YCSB. In ACM
SoCC’10 (2010), pp. 143–154.

[14] DEOROWICZ, S. Silesia corpus. http://www.data-
compression.info/Corpora/SilesiaCorpus/, 2003.

[15] DIFALLAH, D. E., PAVLO, A., CURINO, C., AND
CUDRE-MAUROUX, P. OLTP-Bench: An extensi-
ble testbed for benchmarking relational databases.
VLDB Endowment 7, 4 (2013).

[16] DRAGO, I., BOCCHI, E., MELLIA, M., SLAT-
MAN, H., AND PRAS, A. Benchmarking personal
cloud storage. In ACM SIGCOMM IMC’13 (2013),
pp. 205–212.

[17] GOLDBERG, G., HARNIK, D., AND SOTNIKOV,
D. The case for sampling on very large file systems.
In IEEE MSST’14 (2014), pp. 1–11.

13

330  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

[18] HARNIK, D., KAT, R., SOTNIKOV, D., TRAEGER,
A., AND MARGALIT, O. To zip or not to zip: Ef-
fective resource usage for real-time compression.
In USENIX FAST’13 (2013).

[19] HARNIK, D., MARGALIT, O., NAOR, D., SOT-
NIKOV, D., AND VERNIK, G. Estimation of dedu-
plication ratios in large data sets. In IEEE MSST’12
(2012), pp. 1–11.

[20] HUFFMAN, D. A. A Method for the Construction
of Minimum-Redundancy Codes. Proceedings of
the Institute of Radio Engineers 40, 9 (September
1952), 1098–1101.

[21] J. TATE, B. TUV-EL, J. Q. E. T., AND WHYTE, B.
Real-time compression in SAN volume controller
and Storwize V7000. Tech. rep., REDP-4859-00.
IBM, 2012.

[22] LI, A., YANG, X., KANDULA, S., AND ZHANG,
M. CloudCmp: comparing public cloud providers.
In ACM SIGCOMM IMC’10 (2010), pp. 1–14.

[23] LIN, X., LU, G., DOUGLIS, F., SHILANE, P.,
AND WALLACE, G. Migratory compression:
coarse-grained data reordering to improve com-
pressibility. In USENIX FAST’14 (2014), pp. 257–
271.

[24] MICHAEL BURROWS AND DAVID WHEELER. A
block-sorting lossless data compression algorithm.
Tech report.

[25] NIMBLE STORAGE. Nimble storage: Engineered
for efficiency. Tech. rep., WP-EFE-0812, Nimble
Storage, 2012.

[26] NORCOTT, W. D., AND CAPPS, D. IOzone filesys-
tem benchmark. http://www.iozone.org.

[27] ORACLE. What is ZFS?
http://docs.oracle.com/cd/E19253-01/819-
5461/zfsover-2/.

[28] SCHMIDT, M., HORNUNG, T., LAUSEN, G., AND
PINKEL, C. SP2Bench: a SPARQL performance
benchmark. In IEEE ICDE’09 (2009), pp. 222–
233.

[29] SELTZER, M., KRINSKY, D., SMITH, K., AND
ZHANG, X. The case for application-specific
benchmarking. In USENIX HotOS’99 (1999),
pp. 102–107.

[30] SHANNON, C. E. A mathematical theory of com-
munication. ACM SIGMOBILE Mobile Computing
and Communications Review 5, 1 (2001), 3–55.

[31] TARASOV, V., BHANAGE, S., ZADOK, E., AND
SELTZER, M. Benchmarking file system bench-
marking: It *IS* rocket science. USENIX Ho-
tOS’11 (2011).

[32] TARASOV, V., KUMAR, S., MA, J., HILDE-
BRAND, D., POVZNER, A., KUENNING, G., AND
ZADOK, E. Extracting flexible, replayable mod-
els from large block traces. In USENIX FAST’12
(2012), p. 22.

[33] TARASOV, V., MUDRANKIT, A., BUIK, W., SHI-
LANE, P., KUENNING, G., AND ZADOK, E. Gen-
erating realistic datasets for deduplication analysis.
In USENIX ATC’12 (2012), pp. 1–12.

[34] TAY, Y. Data generation for application-specific
benchmarking. VLDB, Challenges and Visions
(2011).

[35] TRAEGER, A., ZADOK, E., JOUKOV, N., AND
WRIGHT, C. P. A nine year study of file system
and storage benchmarking. ACM Transactions on
Storage (TOS) 4, 2 (2008), 5.

[36] WANG, L., ZHAN, J., LUO, C., ZHU, Y., YANG,
Q., HE, Y., GAO, W., JIA, Z., SHI, Y., ZHANG,
S., ZHENG, C., LU, G., ZHAN, K., LI, X., AND
QIU, B. BigDataBench: A big data benchmark
suite from internet services. In IEEE HPCA’14
(2014), pp. 488–499.

[37] WIKIPEDIA FOUNDATION. English wikipedia.
https://dumps.wikimedia.org/, 2014.

[38] ZHANG, Y., RAJIMWALE, A., ARPACI-
DUSSEAU, A. C., AND ARPACI-DUSSEAU,
R. H. End-to-end data integrity for file systems:
A zfs case study. In USENIX FAST’10 (2010),
pp. 29–42.

[39] ZHENG, Q., CHEN, H., WANG, Y., DUAN, J.,
AND HUANG, Z. COSBench: A benchmark
tool for cloud object storage services. In IEEE
CLOUD’12 (2012), pp. 998–999.

[40] ZHENG, Y., ZHANG, L., XIE, X., AND MA,
W.-Y. Mining interesting locations and travel
sequences from GPS trajectories. In WWW’09
(2009), pp. 791–800.

[41] ZIV, J., AND LEMPEL, A. A universal algorithm
for sequential data compression. IEEE Transac-
tions on information theory 23, 3 (1977), 337–343.

[42] ZIV, J., AND LEMPEL, A. Compression of Indi-
vidual Sequences via Variable-Rate Coding. IEEE
Transactions on Information Theory 24, 5 (Septem-
ber 1978), 530–536.

14

