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Abstract—An increasing number of Analytics-as-a-Service
(AaaS) solutions has recently seen the light, in the landscape
of cloud-based services. These services allow flexible composition
of compute and storage components, that create powerful data
ingestion and processing pipelines. This work is a first attempt at
an experimental evaluation of analytic application performance
executed using a wide range of storage service configurations.
We present an intuitive notion of data locality, that we use as a
proxy to rank different service compositions in terms of expected
performance. Through an empirical analysis, we dissect the
performance achieved by analytic workloads and unveil problems
due to the impedance mismatch that arise in some configurations.
Our work paves the way to a better understanding of modern
cloud-based analytic services and their performance, both for its
end-users and their providers.

I. INTRODUCTION

Large-scale computing frameworks have received a lot of
attention recently, as today they constitute essential tools
that industries exploit to extract value from their data assets.
Thanks to virtualization, compute and storage clusters are
more flexible, they can be easily provisioned in different
sizes, and destroyed when not needed [1]. Increasingly, such
storage and processing systems are exposed to users as ser-
vices, deployed on either public or private cloud computing
environments, rather than on bare-metal machines in private
clusters. Indeed, many companies offer Analytics-as-a-Service
(AaaS) clusters to run a variety of applications: Amazon
Web Services (AWS) with Elastic MapReduce [1], DataBricks
Cloud1 [2], Cloudera Cloud1 [3] and Google Cloud Hadoop
[4] are noteworthy examples.

In cloud computing environments, the architecture of analyt-
ics clusters is the result of the composition of several services,
consisting of three (logically separated) layers: the Compute
layer refers to all cluster nodes that run the data processing
application (e.g., a Spark application); the Data layer refers
to any combination of storage services (e.g., HDFS [5] or
Swift [6]); and the Storage layer that physically stores the data,
including ephemeral disks, object and elastic block stores.

Currently, users of AaaS have abundant information about
pricing, on the one hand, and about the durability of resources,
on the other hand. Although a tedious and complex exercise,
it is possible to reason about cost-based service dimensioning,
and to select appropriate storage services depending on data
availability and durability objectives. As a consequence, it is

1Solution hosted on Amazon Web Services (AWS)

today possible to build data ingestion, storage and processing
pipelines, by composing – in various combinations – the three
layers defined above.

Surprisingly, as of today, very little work has been done
to shed light on the intricate relation that exists between the
performance of analytics applications running on such cloud-
based services, and their composition. As such, the endeavor
of this work is to study the impact of different configurations
of Compute, Data and Storage layers on the performance of a
data analytics framework, with focus on application runtime.

To this aim, we take an experimental approach, and propose
a measurement methodology and campaign, whose objective
is to analyze the performance corresponding to an intuitive no-
tion of distance between where computation happens and data
reside. In doing so, we define an extensive set of application
workloads that challenge the systems under study in different
ways. Ultimately, our goal is to overcome the limitations of
prior works that only provide a boolean vision of data locality:
our results indicate that – in general – the intuitive distance
metric we present in this work is a good proxy to reason about
performance ranking. However, impedance mismatch between
different services and application workloads must be taken
into account to formulate plausible explanations for outliers
in terms of performance.

In summary the contributions of this work are as follows:
• We perform an extensive measurement campaign on a

private cloud computing environment, completely under
our control. Our study involves the combination of several
analytics services. For each deployment scenario, we
report and explain the measured performance of a variety
of application workloads, including read/write intensive,
business intelligence and machine learning applications.

• We present an intuitive notion of data locality that can be
used as a proxy to rank different service compositions,
in terms of expected performance. We critically examine
the validity of our intuition as a function of application
workloads, and identify and explain outliers.

• We present experimental evidence of the impedance
mismatch between large-scale computing framework and
two important storage layers – object stores and elastic
block stores – and deduce mechanism to mitigate negative
effects on performance.

The rest of the paper is organized as follows: in Section II
we introduce the terminology and we detail the domain of

ar
X

iv
:1

60
2.

07
91

9v
2 

 [
cs

.D
C

] 
 1

 M
ar

 2
01

6



Fig. 1. Logical components in an analytics cluster.

our work; in Section III we explain our research question and
in Section IV we describe our approach. The experimental
results and the discussion are presented in Section V. Finally,
Section VI summarizes our contributions and presents some
future research directions.

II. BACKGROUND AND RELATED WORKS

A. Analytic services components

Analytics services consist of three main logical components,
as illustrated in Fig. 1:

1) The Compute layer runs parallel processing frameworks
that execute analytics applications (or jobs), e.g., Apache
Spark [7]. An example of compute layer service is
Amazon Elastic MapReduce.

2) The Data layer exposes logical storage services from
the underlying physical storage system to the Compute
layer. Examples of data layers include Hadoop HDFS
[5] and Amazon S3 [8].

3) The Storage layer handles read/write operations and has
direct access to the data. Disks exposed to the data layer
can be a series of individual, ephemeral devices as well
as more complex distributed file systems.

The distinction between Data and Storage layers is a con-
sequence of virtualization. Indeed, a Virtual Machine (VM)
hosting the Data layer (e.g., the HDFS’ DataNode) might use
a virtual disk which resides on a different host. For example,
many public cloud providers expose virtual disks provisioned
by an underlying distributed file system to improve, among
others, VMs’ migration time. In general, the Compute layer
requires a compatible Data layer to access the Storage layer.

B. Related Works

The performance implications of data locality have been
investigated in several studies. We can identify two major
trends: one (e.g., [9]–[11]) arguing that data locality is not
relevant, while the other (e.g., [12]–[17]) highlighting the
opposite. All these works, albeit valid, base their conclusion
on limited information and define data locality as a boolean

feature (present or not). We move on from this dichotomy by
investigating applications’ performance in a variety of service
compositions, leading to various degrees of data locality.

Considering the methodology, we can divide the recent
research efforts to understand the impacts of data locality into
three main categories: (a) analysis on limited/public configu-
rations, (b) analysis on limited workloads and (c) theoretical
or trace-driven analysis.

a) Limited/Public Configurations: Examples of works
that use limited/public deployments can be found in [9]–[13].
For example, Ousterhout et al. in [9] use an ideal scenario in
terms of data locality (Compute and Data layer on the same
VM), with limited knowledge of the underlying Storage layer.
With the help of an analysis performed on network, disk block
time and percentages of resource utilization, such work state
that the runtime of analytics applications is generally CPU-
bound rather than I/O intensive; thus data locality may be
considered irrelevant. We show that this is not always true.

b) Limited Workloads: The studies presented in [12],
[16], and [18] use a limited set of workloads to investigate data
locality. For example, Xie et al. in [12] use two workloads: a
WordCount and a Grep-like applications to demonstrate that
data placement plays an important role in analytics applica-
tions. While this consideration is valid, with our approach,
we recognize the importance of workload heterogeneity in
studying system performance.

c) Other limitations: Some authors base their works
on theoretical or trace-driven analysis [10], [13]–[15]. The
work from Ananthanarayanan et al. in [10] is based on Face-
book’s traces. The authors state that, since network technology
evolves quickly, data locality is an aspect that will soon be
neglected; they also use micro benchmarks to study a single
aspect of an analytics cluster. Instead, we show that in some
cases the network might indeed not be a bottleneck, while in
others it may contribute to harm application performance. In
addition, using a micro-benchmark approach alone to measure
I/O performance, can lead to inaccurate results, since analytics
frameworks like Spark or Hadoop are more complex than, a
set of read/write operations.

Works like [19]–[21] do not fall directly into one of these
categories, as they model different aspects of a MapReduce
application. Nonetheless, they leave data locality as an abstract
concept and they always consider configurations when Com-
pute, Data and Storage are on the same host. For example,
Yang et al. in [19] model the relationship between number
of mapper and reducers, while Lin et al. in [20] model an
entire analytics application that uses Hadoop and an analytics
framework. Zhang et al. in [21] create a model to improve the
data locality when Compute, Data and Storage layers are on
the same machine. We go further and study data locality when
there is a clear separation of Compute and Data layer.

III. PROBLEM STATEMENT

We empirically evaluate the performance of analytics ap-
plications composed using a variety of Compute, Data and
Storage layer configurations. Our goal is to understand how



application run time varies across configurations, for a wide
range of application workloads.

Performance modeling of complex, distributed systems is
a daunting task: application runtime is affected by several
factors, including data locality (which is the foundation of
parallel processing frameworks such as Hadoop and Spark),
impedance mismatch between the various services involved in
analytic applications, interference between competing tenants,
application workloads, and many more.

As such, we take an experimental approach, and analyze
application performance through the lenses of the data locality
principle, which we revisit to accommodate the breath of
storage configurations currently available in most public and
private clouds. In our study, we emphasize problems that arise
as a consequence of service composition, and suggests ways
to mitigate them.

IV. METHODOLOGY

We use a private cloud computing platform to overcome
the limitations of experiments performed on public cloud
infrastructures and we run 4 different types of analytics appli-
cations: read intensive, write intensive, business intelligence
and machine learning. In this section we: (i) provide the
specifics of our platform, (ii) illustrate the different placements
of Compute, Data and Storage layers that we use in our
experiments, (iii) introduce an intuitive notion of distance
between where computation happens and data reside, that we
call the Compute-to-Data path, (iv) present our workloads and
(v) explain the metrics used.

A. Experimental Platform

Our platform is composed by 25 server-grade machines
equipped with: (i) two sockets with an Intel Xeon at 2.40GHz,
with hyper threading enabled (32 Cores), (ii) 128 GB RAM
and (iii) ten 7200 RPM 1 TB disks. The platform is distributed
across three racks. All the switches in the network topology
can be considered “non-blocking”: all machines can commu-
nicate at 1Gbps with each other.

We operate our platform using OpenStack [22], which
can automatically provision virtual analytic clusters composed
by VMs connected directly to each other (i.e., no traffic
encapsulation and no virtual routing).

Our platform provides volumes (similar to Amazon EBS
[23]) and ephemeral disks Storage layers. Volumes are pro-
visioned through the Openstack’s Cinder module [24] on
top of Ceph [25] that is a distributed file system featuring
high performance, reliability and scalability. Ceph’s blocks are
distributed over 8 disks spread across 5 physical machines.
Similarly to a traditional RAID 0 approach, when performing
read and write operations, Ceph divides the data in smaller
chunks (8 MB) and store them across storage servers, called
Object Storage Daemons (OSDs). Instead, ephemeral disks are
connected to a portion of a single physical disk that reside on
the same host that runs the virtual machine using it.

Our private cloud uses the OpenStack Sahara project to
automatically provision Compute layers: in this work, we use

Apache Spark [7]. Spark can read from several Data layers; the
two widespread solutions that we take into consideration are
HDFS and Swift (which is similar to Amazon S3 [8]). HDFS
is a Java-based distributed file system providing scalable and
reliable data storage, designed to store a small number of
large files. Swift is a highly available, distributed, eventually
consistent object store designed as a generic service to reliably
store very large numbers heterogeneous files. In our platform,
Swift is deployed on a single physical machine using the
Swift-All-in-One (SAIO [6]) configuration, on the basis of the
capacity planning suggested in [26]; no other processes share
Swift’s hardware. More generally, Swift can be deployed on
several machines, to increase, e.g., capacity and reliability, at
the cost of increased network traffic. It is worth noting that
we disabled the Swift authentication mechanism in order to
avoid additional overhead in the communication process, and
to focus only on the data path.

In this work, we gloss over the intricacies due to multi-
tenancy and interference: hence, we statically allocate a por-
tion of the platform to run our experiments. The Compute layer
is virtualized on 5 VMs and uses Spark 1.5.2 as the computing
framework: 4 workers, spread across 4 different hosts, and 1
master. The Data layer is also virtualized in 5 VMs spread
across 5 different hosts. All the VMs are equipped with (i) 4
cores, (ii) 32 GB of RAM and (iii) 80 GB of disk.

To gain statistical confidence in our results, all the experi-
ments we report in this article were repeated five times.

B. Deployment scenarios

We define a deployment scenario as a configuration of
Compute, Data and Storage layers and study 4 scenarios that
we think representative of common configurations:

1) GC: Guest Collocation. The Compute and Data layers
are hosted on the same VM, the Storage layer is an ephemeral,
local disk. This is a popular configuration in public clouds:
when a GC cluster is decommissioned, all data is lost.

2) GC-V: Guest Collocation with Volumes. Same con-
figuration as for GC, but the Storage layer uses volumes
provisioned using the Ceph distributed file system. This is also
a popular configuration in public clouds: it enables elasticity
at the Compute layer, without sacrificing data durability at the
Data and Storage layers.

3) SWI: Swift. The Compute and Data layers run on
distinct hosts. The Data layer is the Swift object store, which
ensures data durability. Similarly to the GC-V configuration,
this scenario enables Compute layer elasticity, and it is a
popular configuration for its simple REST-based interface to
interact with data.

4) NC: No Collocation. The Compute and Data layers
run on different hosts; the Data layer uses HDFS mounted
on a Storage layer that uses ephemeral, local disk. This is
a scenario enabling data durability: the Compute layer can
be decommissioned, while the Data and Storage layer keep
running.

As we discuss in Section IV-C, each scenario presents a
different degree of data locality. In addition, we note a first ex-



Fig. 2. Compute-to-Data path for different scenarios during read operations.

ample of impedance mismatch, which we further elaborate in
the remainder of this work. Indeed, both the Data and Storage
layers might implement their own data replication mechanism.
This is evident in the GC-V scenario: when HDFS is mounted
on volumes, HDFS and Ceph replication mechanisms are
redundant. To better understand the performance implications
of the GC-V scenario, we thus distinguish two cases: GC-Vb,
with both HDFS and Ceph replication and GC-Vs, with only
Ceph replication, which correspond to the degrees of freedom
exposed to users for configuring their services. Note that if
HDFS replication is disabled, Spark (the Compute layer) has
no other means to retrieve the data if a datanode crashes,
resulting in a failure of the application; also Spark’s scheduler
has less flexibility in scheduling tasks, because data blocks are
present in only one datanode. In contrast, by enabling HDFS
replication, the application will write extra data.

C. Compute-to-Data path

We now introduce an intuitive notion of distance between
where computation happens and data reside. As illustrative
examples, consider the following cases: compute and data
reside on the same VM, on different VMs running in the same
physical host, on different VMs on different physical hosts in
the same rack, and so on.

It is intuitive to treat these cases as increasing in terms of
distance, which is thus loosely coupled with the amount of
network links data need to traverse for being processed. Also,
recall that read and write operations issued by the Compute
layer, work on a given split of the input or output data, which
is organized as a sequence of records. We use the following
intuitive and rough definition of distance:

Definition: The Compute-to-Data path is the number of
logical links a successful (read or write) operation must cross,
for a given data record.

In this Section we use the Compute-to-Data path as a proxy
to reason about performance ranking, that takes into account
the logical distance between the three layers composing an
analytic service and the additional cost of the replication
system(s). Indeed, we can expect a performance degradation
each time an operation traverses a network link: the intuitive
ranking holds even if we do not explicitly model network
latency or topology.

Figure 2 shows graphically how we derive the Compute-to-
Data path for each scenario during a read request. Note that it
is important to be careful and take into account the architecture

Fig. 3. Compute-to-Data path for different scenarios during write operations.

details of each layer: for example, Swift has a single point of
access called the Swift-Proxy, which mediates between the
Compute layer and Swift’s storage nodes. To calculate the
Compute-to-Data path we count all the logical links, between
the Compute layer and the physical data, that each individual
record request has to traverse. Considering the SWI scenario,
we have one link from Compute layer to Swift-proxy, then one
more between Swift-proxy and Swift’ storage nodes, finally
the record request’s ACKs traverse the same links to reach the
Compute layer, for a total of 4 links. Similar consideration can
be made for the remaining scenarios: the GC traverses 0 link
while the GC-V and the NC 2 links.

For write requests, data replication has to be taken into
account. HDFS, Swift and Ceph have different replication
systems: HDFS uses chain-replication, whereas Swift and
Ceph use asynchronous replication, with different quorums.
Assuming a replication factor of 3, the Swift-proxy requires
2/3 of storage nodes to acknowledge a write operation,
whereas Ceph requires all OSDs to acknowledge success.
Figure 3 illustrates how to derive the Compute-to-Data path
for each scenario during a write request. Taking GC-Vb as
example: a single datanode record write operation traverse 4
links, since we have HDFS replication active with a factor
of 3, we will have 12 links; we also have to count the links
between datanodes and the final ACK, for a total of 15 links.

The Compute-to-Data path for read and write operations,
and for different scenarios is summarized in Table I. In the
Table, we organize and rank scenarios based on their distance:
intuitively, we expect application performance to follow the
same ranking we produce using the Compute-to-Data path.
Our measurement results indicate that the Compute-to-Data
path is a good proxy to rank scenarios based on their expected
relative performance, albeit intuition is not sufficient alone to



TABLE I
EXPECTED SCENARIOS’ PERFORMANCE RANKING.

(a) Read

Rank Scenario #links

1 GC 0

2 GC-V 2
2 NC 2

3 SWI 4

(b) Write

Rank Scenario #links

1 GC 3

2 GC-Vs 4
2 NC 4
2 SWI 4

3 GC-Vb 15

TABLE II
WORKLOADS’ DETAILS.

Workload #Jobs #Mapper #Reducer Input Size Output Size

WordCount 1 158 158 20 GB 225.6 MB
DFSIO 1 160 0 0 B 20 GB

TPC-DS 217 16160 16821 13 GB 17.9 KB
Decision-Tree 153 4549 4825 3 GB 8 MB

explain what we support with data.

D. Benchmark and Workloads

To study the performance of analytics applications we use
four workloads (described in details in Table II), that are
currently used in popular benchmark tools suites and cover
different kinds of applications. We use WordCount and DFSIO
from Intel Hi-Bench [27], [28] test suites; the first is the
“Hello World” application for parallel computing, which is a
read-intensive workload, while the second is a write intensive
application: they both perform read and write operations on
plain-text files. TPC-DS is a transaction processing perfor-
mance Council’s decision-support benchmark test [29], [30],
by DataBricks’ Spark-Sql-Perf library [31], that executes 5
complex queries2 from files stored using the Parquet Format
[32]. Decision-Tree is a machine learning algorithm taken
from Spark’s MLlib library [33], [34] that reads CSV files and
builds a statistical model of the underlying data distribution;
this is the only workload that uses caching for the input data:
due to its iterative nature, this is the current best-practice to
achieve low training times.

E. Performance metrics

To investigate the impact that different configurations have
on application performance, we use 4 metrics. The first is
the job runtime: this is the amount of time required by the
application to terminate its execution. To delve into the reasons
behind each workload’s behavior in each scenario, we define
extra metrics collected for each analytics application during its
execution. These metrics are the percentages of CPU, Network
and Disk used by the application itself, computed by standard
tools such as iostat [35].

2In Databricks’ library they are called simple-queries.

To compute the above metrics, we monitor each component
of the clusters deployed for a specific scenario: Spark master,
Spark worker, HDFS namenode, HDFS datanode and Swift3

V. RESULTS

In the following we analyze the performance of each work-
load and its behavior on each scenario, and summarize our
findings, discussing the implications for both end-users and
providers of cloud services. Furthermore, we discuss about
possible directions to mitigate the performance degradation
that some Data and Storage layers incur.

A. Analytics Application Benchmark

Application performance is easier to understand when re-
sults are grouped by workload type. For this reason, in what
follows we first delve into the details of each application we
use in our experiments. The template we use in our analysis
is as follows: first, we discuss whether the ranking produced
by our intuitive Compute-to-Data path matches that of real
workloads, then provide experimental evidence to explain
outliers.

1) WordCount: In general, we remark that the expected
rank produced in Table I is representative of application
performance: from Table IIIa we see that the GC and GC-
V scenarios have roughly the same performance, whereas the
NC and SWI scenarios are slower.

The NC scenario constitutes an interesting out-lier: applica-
tion runtime is roughly 25% slower compared to higher rank
scenarios. This is caused by a lower, compared to the GC,
CPU utilization (as shown in Fig. 4) that is a direct effect of
an inefficient use of network resources: indeed, all read/write
operations are synchronous, thus the CPU is blocked until the
operation is completed. Note that, although the NC and GC-V
cases have the same Compute-to-Data path, their data access
mechanism is different. In the NC scenario, when a Compute
instance requests a record from a datanode, the record is read
over a single disk and network link, which performs poorly
overall. Furthermore, aside from being a slow configuration,
the NC scenario is also the most expensive one.

Instead, the GC-V scenario achieves very good perfor-
mance, even if the network cards we use in our platform (1
Gbps interfaces) are not on par with what is currently deployed
in public clouds such as AWS (10 Gbps interfaces). This is the
result of parallel data transfers, which use network resources
more efficiently: fragments of data records are read or written
by several disks and transfered over multiple network links. As
such, the expected performance degradation caused by a large
Compute-to-Data path is practically nullified. Additionally, we
remark that application performance can reap the benefits of
having both Data and Storage layer replication enabled (GC-
Vb): indeed, Spark’s scheduler has more flexibility in choosing
the designated executor for a specific task since there are
multiple copies of the same data block.

As expected, the SWI configuration achieves the worst
performance: as we discuss later, this is due to both poor

3We monitor the Swift-All-in-One deployment as a single component.



TABLE III
ANALYTICS APPLICATIONS BENCHMARK RESULTS IN ASCENDING ORDER.

(a) WordCount

Rank Scenario Run Time (s)

1 GC-Vb 121.29± 2.20

1 GC 125.23± 2.15

1 GC-Vs 125.28± 1.89

2 NC 157.85± 2.94

3 SWI 279.55± 4.07

(b) TPC-DS

Rank Scenario Run Time (s)

1 GC-Vb 454.48± 6.89

1 GC 460.21± 3.95

1 GC-Vs 469.66± 9.31

2 NC 571.01± 3.98

3 SWI 2773.96± 16.89

(c) DFSIO

Rank Scenario Run Time (s)

1 GC 305.86± 14.68

1 NC 308.83± 13.38

1 GC-Vs 330.99± 13.15

2 GC-Vb 848.48± 60.74

3 SWI 1114.56± 28.22

(d) Decision Tree

Rank Scenario Run Time (s)

1 GC-Vb 997.50± 16.47

2 NC 1067.35± 33.48

2 GC 1076.68± 39.74

2 SWI 1101.37± 21.74

2 GC-Vs 1133.56± 37.13
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Fig. 4. Resource utilization with the WordCount workload in different
scenarios. The ticks on the X axis “W”, “D” and “S” stand, respectively
for worker, datanode and Swift machines. The resource utilization reported
is a global average across all instances of each layer. The network utilization
between the GC-V and GC scenarios is similar because volumes’ network is
opaque to the Operating System and, therefore, counted in the disk utilization.

architectural choices (Swift was not originally designed to
serve parallel processing frameworks) and to problems that
arise between Spark and Swift.

2) TPC-DS: Table IIIb indicates that there is a good match
between the expected ranking obtained using the Compute-
to-Data path (TPC-DS is a read intensive workload) and ap-
plication runtimes. Similarly to the WordCount workload, the
NC scenario suffers from inefficient use of network resources.
Figure 6, which shows the CDF of the task runtime for each
workload, supports this claim: tasks are slower in the NC
configuration, compared to the GC and GC-V scenarios.

To better understand the causes of the increased tasks
runtime, in the SWI scenario, we study resource utilization.
Figure 5 shows the resource utilization across different sce-
narios. In SWI, the network may be considered the source of
slowdown (as shown by the median at almost 100%): in fact, in
Swift all requests to read or write data records pass through the

same physical channel (at the proxy), stressing the network and
its chances to become a bottleneck. To tackle this issue, AaaS
providers adopt two approaches: faster network links (e.g., 10
Gbps) and deployment of several proxies to balance the traffic.
These solutions partially mitigate the problem. Using faster
network links may work, but does not scale with the number of
concurrent tenants. Using several proxies and a load balancer
introduces other problems: (i) additional delays due to an extra
communication step; (ii) a single storage node will have to
handle more requests coming from different proxies, thus mov-
ing the pressure from the link Compute-to-Proxy to the link
Proxy-to-Storage nodes. Inevitably, additional proxies bring
Swift architecture closer to that of HDFS-like system, but at
an higher cost in terms of required hardware and consequently,
requiring a difficult capacity planning. Additional factors that
contribute to performance slowdown include the extra time
required by Swift to parse HTTP requests and to dispatch
them to the different storage nodes. Finally, from Fig. 5 we
can also see how the CPU utilization in the Compute layer
of the SWI scenario is lower compared to the other scenarios;
similarly to WordCount, this is because the Compute layer has
to wait more time to process the data.

Clearly, a narrow measurement campaign that focuses on a
single scenario (e.g., the GC configuration) might lead to in-
accurate conclusions: even if the workload may be considered
CPU-bound – thus suggesting data locality to be irrelevant –
different configurations with different levels of data locality
have a non-negligible impact on application runtimes.

3) DFSIO: Table IIIc shows the measured runtime of
DFSIO, which is a write intensive workload, for several
configurations. As expected, the intuitive ranking we derive
using the Compute-to-Data path only partially matches with
experimental results: impedance mismatch between layers is
the main culprit for performance degradation.

First, we focus on the SWI scenario: to better understand our
experimental results we run a micro benchmark that, using the
python-swift4 client, emulates the DFSIO workload: writing
the same amount of data as for the DFSIO workload takes
only 300 seconds. A detailed log inspection indicates that
Swift – because it stores immutable objects with immutable
identifiers – does not work well in conjunction with current
parallel processing frameworks such as Spark. Indeed, Spark
tasks always output temporary files that are renamed once the

4https://github.com/openstack/python-swiftclient
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Fig. 5. Resource utilization with the TPC-DS workload in different scenarios.
The ticks on the X axis “W”, “D” and “S” stand, respectively for worker,
datanode and Swift machines. The resource utilization reported is a global
average across all instances of each layer. The network utilization between
the GC-V and GC scenarios is similar because volumes’ network is opaque
to the Operating System and, therefore, counted in the disk utilization.

processing is complete5. Since in Swift a rename operation
is implemented as a copy operation, the DFSIO workload in
the SWI configuration involves writing much more data than
required, hence the poor performance. In particular the data
are written 2 extra times, the first from tasks themselves and a
second time from the Spark master when the job is completed.
From the logs we can see that the job wrote 20 GB in 600
seconds (s) while the application ran in 1114s; in the 600s
spent by the job, every task performed a rename operation
writing the output one extra time; the difference between
the job and the application runtime (514s) corresponds to
the time spent by the Spark’s master to rename all the files
written by the tasks, that is, to write the output a third time.
Figure 6 shows the distribution of task runtimes for the DFSIO
workload: for the SWI scenario, tasks are much slower than
in other scenarios, which corroborates our claims6.

Next, we focus on the GC-V scenarios. In this case, the
impedance mismatch between Data and Storage layers is to
blame for poor workload performance. Table IIIc indicates
that by disabling HDFS replication mechanism (scenario GC-
Vs), performance drastically improves when compared to a
naive deployment with both replication mechanisms (HDFS
and Ceph) enabled. Although this is not possible to study in
a public cloud, we also run experiments in which we disable

5This is reminiscent of the failure tolerance mechanisms in Spark, that
assumes tasks can fail at any time.

6We are aware of a work from IBM (https://github.com/SparkTC/stocator)
that aims to address the file renaming problem.
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Fig. 6. DFSIO and TPC-DS CDFs for task runtimes in all scenarios.

Ceph replication and only use HDFS replication: in this case,
the application runtime falls to roughly 250 seconds, that it
is 20% faster to complete with respect to the GC scenario.
In summary, write-intensive applications can be significantly
affected by impedance mismatch between services: replication
and failure tolerance mechanisms implemented in different
layers must be tuned to achieve better performance.

4) Decision-Tree: The decision tree algorithm taken from
Spark’s MLlib is at the heart of our machine learning use
case: it is an iterative algorithm that builds a statistical model
using millions of training data points. Table IIId indicates that
application runtimes are essentially independent from system
configurations. This is the results of using Spark caching
mechanism. When using caching at the application level, the
interaction between Compute and Data/Storage layers is lim-
ited to reading the input data; the bulk of the computation, and
hence the application runtime, happens during the iterations
of the decision tree algorithm, in which the Data and Storage
layers do not intervene. Finally, the output of the algorithm is
a statistical model, which is very small for this workload.

Finally, we note that the GC-Vb scenario performs better
than others: indeed, (i) Ceph reads from multiple disks and (ii)
Spark’s internal scheduler has more flexibility in placing tasks
because of the increased data redundancy at the HDFS layer.
In general, the most used resource is CPU, while network and
disk I/O are barely used.

B. Summary of the results

Choosing the right composition of analytic services is a
difficult problem, involving cost considerations, data durabil-
ity requirements, and ultimately, expected application perfor-
mance. Our experimental findings pave the way to informed
decisions about AaaS deployments. In the following, we
summarize our results and their implications.
Service composition. A configuration that aims at achieving
data durability in spite of the ephemeral nature of VMs and
the services they execute, must be designed with care. For
reasons ranging from ease of integration to familiarity with
well-established APIs, it is tempting to compose services as
done in the NC (no collocation) scenario we study in this
work. Our results show that this is a bad choice for a wide



range of workloads, in which precious CPU cycles are lost to
wait for data to travel over the network.
Volumes. Using volumes provisioned on top of a distributed
file system like Ceph perform surprisingly well. This is
unexpected as, similarly to the NC scenario, the network is
heavily involved during application execution. However, our
results indicate that even with a modest bisection bandwidth,
the Compute layer can make quick progress toward the end
of an application, thanks to the efficiency of striping.

However, as cautionary note, our results indicate a potential
impedance mismatch between Data and Storage layers, due to
the interaction of multiple replication mechanisms. As such,
end-users should be aware of the situation, and appropriately
configure the Data layer, such that data replication is only
performed by the Storage layer, because this is of great benefit
to application performance.

Additionally, our results indicate that cloud computing
providers could differentiate their volume offering: general
purpose volumes would work as usual, whereas analytics
volumes should disable data replication. In this case, end-users
would be in complete control of replication: our results show
that – especially for write intensive workloads – this produces
superior performance.
Swift. The performance of Swift is disappointing. This is
due to another instance of impedance mismatch, between the
Compute and Data layer. Swift inability to rename files with-
out actually creating a new copy, causes severe performance
penalties, making Swift a sub-optimal solution.

In addition, we note that the Swift architecture was designed
for applications that are very different from parallel computing
frameworks: our results indicate that the Swift proxy may
represent a bottleneck, since it is involved in the data path.
Certainly, using a proxy server as coordinator enables cluster
managers to easily add control flows to Swift, but this degrades
performance. One solutions that is currently adopted by several
companies using Swift, at a production level, is to add several
proxies and balance the traffic load between them: but because
the workload may change unpredictably, a well thought capac-
ity plan is not easy to obtain. As previously underlined, more
proxies will make the Swift’s architecture somehow similar
to HDFS, but at higher costs. Recent work from IBM [36]
shows that some control flow and data transformations can
be done much closer to the storage nodes. As a consequence,
it is tempting to suggest the design of a new Swift proxy
that could behave similarly to the HDFS NameNode: such
alternative proxy would only act as a metadata storage, and
would not be involved in the actual data path.
Caching. Finally, our results show that caching plays an
important role in determining application performance. On the
one hand, caching “breaks” the Compute-to-Data path that can
be inferred from read/write operations on data records, which
makes application performance more difficult to predict. On
the other hand, by collapsing the Compute-to-Data path, it
mitigates the problems of several configurations we studied,
which is helpful for end-users because it gives more flexibility
in choosing Data and Storage layers.

However, the design of inter-application caching mechanism
for parallel processing frameworks is still in its infancy:
Tachyon [37] and HDFS2 are good examples of recent ap-
proaches to tackle this problem.

VI. CONCLUSIONS AND FUTURE WORK

We investigated the impact of different Compute, Data and
Storage layer configurations on the performance of a data
analytic framework. We took an experimental approach, and
proposed a measurement campaign, whose objective was to
analyze workload performance in light of an intuitive notion
of distance between where computation happens and data
reside. First, we discussed how to approximately rank different
service compositions, in terms of expected performance. Then
we performed an extensive measurement campaign on a pri-
vate cloud computing environment. Results indicated that, in
general, our intuitive distance metric is a good proxy to reason
about performance ranking. Finally we presented experimental
evidence of the impedance mismatch that affect two important
storage layers – object and elastic block stores – and deduced
mechanism to mitigate negative effects on performance.

As for many measurement studies, it is reasonable to
question the generality of the conclusions, when experiments
are performed on a single (and very complicated) platform
instance. To this end, our research road map includes extending
our measurement methodology to public cloud providers, such
as AWS, and consider additional workloads. For example,
we expect a service like Amazon S3 to achieve superior
performance than Swift. Note that our intuitive methodology
to approximately rank scenarios nicely extends to large cloud
providers, where a detailed view of system internals – that
could define a more accurate distance metric – is not available.
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