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As the complexity and scale of cloud storage systems grow, software-defined 

storage (SDS) has become a prime candidate to simplify cloud storage 

management. In this work, the authors present IOStack: the first SDS architecture 

for object stores (such as OpenStack Swift). At the control plane, administrators 

provision SDS services to tenants according to policies expressed via a high-

level DSL. At the data plane, IOStack helps build a variety of filters, ranging from 

arbitrary computations on objects to data management mechanisms. Experiments 

illustrate that IOStack enables easy and effective policy-based provisioning, which 

can significantly improve the operation of a multitenant object store. 

Nowadays, the amount of data 
stored in cloud storage services is 
growing at unprecedented rates, 

as is as the variety and heterogene-
ity of workloads supported by data-
center infrastructures. At the same 
time, datacenter administrators should 
respond with increasing agility to 
changing business demands in a cost-
effective manner, which is cumbersome 
due to the complexity of large cloud 
environments.

Software-defined storage (SDS) has 
recently become a prime candidate to 
simplify storage management in the 
cloud. The incipient literature in the 
field states that SDS should provide a 
storage infrastructure with three items: 
automation, optimization, and policy-
based provisioning.1,2 Typically, this is 
achieved by explicitly decoupling the 
control plane from the data plane at the 
storage layer.

Automation enables a datacenter admin-
istrator to easily provision resources  
and services to tenants. This includes 
the virtualization of storage services 
(volumes and filesystems) on top of per-
formance-specific servers and network 
fabrics orchestrated by the SDS system. 
Optimization refers to the seamless abil-
ity to automatically allocate resources to 
meet the performance goals of the differ-
ent workloads.2 Finally, policy-based pro-
visioning lets the datacenter administrator 
control I/O performance and other value-
added services through the deployment of 
well-defined policies.1 This includes, for 
instance, applying data-reduction tech-
niques, computation, and I/O bandwidth 
differentiation on shared storage.3

Keeping this information in mind, 
we present IOStack (http://iostack.eu), 
the first SDS architecture for object 
storage (such as OpenStack Swift). In 
the following, we discuss what SDS 
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technologies have contributed thus far, and how 
IOStack meets and exceeds the capabilities of 
current offerings.

Today’s SDS Technologies
Today, SDS has become a buzzword to describe 
popular storage products such as EMC ViPR and 
IBM Spectrum Storage. Such products promise 
to make it easier for IT departments to handle 
large amounts of storage, by uncoupling the 
management from its underlying hardware. 
Other products, such as MPStor Orkestra, tap 
into storage virtualization and a centralized 
controller to provision a variety of virtualized 
storage and network resources.

Although these offerings have embraced this 
new way of managing storage, SDS goes beyond 

automated resource provisioning.1,2 A  distinctive 
feature of SDS is the ability to transparently 
enforce transformations on data flows based on 
simple policy definitions, as elaborated in IOFlow,1 
the first seminal work in the field. (We detail more 
on IOFlow and other cloud storage management 
efforts in the related sidebar.) The outstanding fea-
ture of IOFlow is that it decouples the data plane 
that enforces the policies from the control plane 
where the policy logic lies, allowing I/O control 
close to the source (typically a virtual machine, or 
VM) and destination (shared storage) endpoints.

However, full abstraction from the underlying 
hardware and storage stack isn’t easy to achieve. 
For instance, the enforcement of policies can be 
done at the file, block, and object levels, making it 
difficult to apply the “one-size-fits-all”  philosophy 

Related Work in Cloud Storage Management

In trying to simplify storage management in the cloud, IOStack 
benefits from the synergy between software-defined storage 

(SDS) and active storage.

SDS
IOFlow1 describes the first SDS architecture — decoupled con-
trol and data planes — that provides policy-based provisioning. 
Although this work is inspiring, there are profound differences 
between IOFlow and our IOStack architecture. The most evident 
difference is that IOFlow is designed for a particular file system, 
whereas IOStack focuses on object storage. Moreover, IOFlow 
has a specific scope; it provides low-level I/O services (routing 
and classification) to control flows and guarantees I/O bandwidth 
limits. In contrast, IOStack’s filter framework is more flexible 
and supports arbitrary computations on object requests. This 
enables heterogeneous filters to be easily added to the system.

Similarly, others2 have recently proposed a system called 
Retro, which controls and monitors resource usage in a dis-
tributed system (control plane). Retro also enforces bandwidth 
and latency policies to guarantee a certain service-level agree-
ment (or data plane). Although Retro isn’t a complete SDS sys-
tem, we believe that it’s particularly interesting as a reference 
to build dynamic I/O bandwidth differentiation in IOStack.

Active Storage
The early concept of active disks3 — that is, hard drives with 
computational capacity — has been borrowed by distributed 
file system designers in high-performance computing environ-
ments (for example, active storage) for reducing the amount 
of data movement between storage and compute nodes. Con-
cretely, Juan Piernas and his colleagues4 presented an active 
storage implementation integrated in the Lustre file system 
that provides flexible execution of code near data in the user 

space. The industry also has taken remarkable steps in this 
direction by implementing commercial distributed file systems 
with compute power, such as the Panasas activescale file sys-
tem (PanFS; www.panasas.com/products/panfs) and Parallel 
Virtual File System (PVFS; www.pvfs.org). Similarly, the filter 
framework of IOStack enables computations on data objects 
for policy enforcement. However, there are major differences 
between IOStack and previous efforts: first, previous work 
didn’t focus on object storage; and second, IOStack provides 
isolated or sandboxed code execution.

Perhaps the closest technology to IOStack for leveraging 
active storage (IBM Storlets; see https://github.com/openstack/
storlets) is ZeroCloud (www.zerovm.org/zerocloud.html). Both 
IBM Storlets and ZeroCloud rely on application containers — 
Docker and ZeroVM, respectively — for executing general-
purpose code on Swift objects. However, the use of ZeroVM is 
more restrictive, as all code needs to be written in C and com-
piled via a proprietary tool chain. Further, Docker has advanced 
tools, such as Docker Swarm (https://docs.docker.com/swarm) 
or Zoe (http://zoe-analytics.eu), that will be exploited in IOStack 
to orchestrate the execution of filters in Swift nodes.
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to SDS. Whereas IOFlow can be classified as a  
file-level SDS architecture, there are no SDS sys-
tems for block and object storage yet.

Toward SDS for Object Storage
Object storage is becoming increasingly impor-
tant for many customers and applications, 
because it’s ideal for solving the increasing 
problems of data growth. As more data is gen-
erated, storage systems must grow at the same 
pace, which is difficult to achieve with block-
based storage systems, for instance.

Object stores are suitable to store immutable 
data that might be subject to future analysis, 
such as server logs from Internet services,4 the 
upcoming data deluge of the Internet of Things 
(IoT),5 or even data coming from Web crawlers 
and sensor networks. There are also important 
synergies between object storage and Big Data 
scenarios6: DataBricks (https://databricks.com) —  
the company that develops Apache Spark — 
resorts to Amazon Web Services to deliver 
data processing services, including Simple Stor-
age Service (S3). These disparate use cases can 
coexist in a multitenant object store, which 
reinforces our motivation for building an SDS 
architecture for object storage.

As a reference object store, we focus on 
OpenStack Swift (or simply Swift; see http://
docs.openstack.org/developer/swift). Swift is 
accessed via a REST API similar to Amazon 
S3 (such as PUT or GET). Swift can be run on 
commodity servers and has been architected 
to automatically replicate data across available 
disks for providing scalability, availability, and 

data integrity. Internally, Swift consists of proxy 
servers and storage nodes (see Figure 1). Proxy 
servers route user requests to the storage nodes 
that are the actual data containers and respon-
sible for data maintenance and availability.

To better understand our goals, let’s draw 
an example of a multitenant scenario. Imag-
ine an object store and three different tenants 
that access the system concurrently. On the one 
hand, tenant T1 represents several servers that 
are uploading data gathered from a sensor net-
work. On the other hand, tenants T2 and T3 rep-
resent sets of VMs in a computing cluster that 
perform computations on data objects contain-
ing logs (see Figure 1).

In such a scenario, a datacenter administra-
tor might wish to define distinct policies for these 
tenants to optimize the system’s operation or to 
enforce certain service-level agreements (SLAs). 
Intuitively, she could apply a data compres-
sion policy to T1 for reducing its storage space 
demands, given that log-like data is potentially 
redundant.7 Tenants T2 and T3, however, might 
apply data filters to import only the fraction of a 
dataset actually needed for a specific computation 
task, thus reducing download traffic.4 Further, the 
administrator might wish to assign different I/O 
bandwidth limits to the requests of T2 and T3.

As you can infer, the enforcement of these 
policies could permit an object store to manage 
concurrent workloads more efficiently. How-
ever, today’s object stores lack a flexible and 
transparent way of enforcing storage policies 
on object requests. This is precisely the objec-
tive of IOStack.

Figure 1. Example of an OpenStack Swift deployment (proxy nodes in dark blue, storage nodes in light blue) 
concurrently accessed by various tenants. Storage policies can be enforced on object requests to optimize the system 
and enrich the service.
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IOStack’s Design
The previous example opens the door to apply stor-
age optimizations under multitenant workloads,2 
as well as to offer quality-of-service (QoS) differ-
entiated policies based on a tenant’s requirements. 
Moreover, from a datacenter administrator’s per-
spective, these goals must be achieved transpar-
ently, involving minimal human intervention.

To realize this vision, we equipped IOStack 
with the following features:

•	 Policy-based provisioning. At the control 
plane, administrators provision SDS services 
to tenants via policies. Policies might target 
storage automation, such as enforcing com-
pression or caching to a tenant’s requests. 
Administrators might also define policies 
that target a certain objective or SLA. In this 
case, IOStack provides policies with a mon-
itoring-based control loop to achieve their 
objective under dynamic workloads.

•	 Filters. At the data plane, filters perform 
actual data transformations on object 
requests to enforce storage policies. IOStack 
has a suitable architecture to favor the inte-
gration of new filters by third parties. IOStack 
also includes a ready-to-use filter framework 
that enables the execution of user code on 
object requests at different stages along an 
object’s write/read path. A developer integrat-
ing a new filter only needs to contribute the 
filter’s logic; the deployment and execution of 
the filter is managed by IOStack.

Next, we describe the design of policies in 
IOStack.

Administration: Storage Policies
Storage policies can be seen as a means of pro-
viding storage automation and/or SLA targets. 
In IOStack, datacenter administrators simply 
define provisioning policies to tenants via a sim-
ple domain-specific language (DSL). Each policy 
definition contains a target (for example, TEN-
ANT or CONTAINER), an action (DO clause), and 
optionally, a workload-based condition (WHEN 
clause). Hence, an administrator might define:

P1:FOR CONTAINER C1 DO SET CACHING
P2:FOR TENANT T1 WHEN PUTS_SEC > 3 DO 
SET COMPRESSION
P3:FOR TENANT T2 DO SET BANDWIDTH WITH 
PARAM1=30MBps

In this example, the first policy represents a 
storage-automation policy, as the system auto-
matically performs data caching on container 
C1 after the definition of this policy. The second 
policy goes further, enabling data compression 
on tenant T1’s requests if its throughput exceeds 
three PUTs per second. Similarly, the last pol-
icy aims at providing a certain amount of I/O 
bandwidth to T2, considering that multiple ten-
ants might be transferring data concurrently. 
As we show later, objective-oriented policies 
require monitoring information to achieve their 
objectives.

Our DSL also supports grouping policies into 
QoS levels; that is, GOLD tenants might benefit 
from data compression, active storage tasks, 
and high bandwidth limits, whereas BRONZE 
tenants might receive only a small fraction of 
the available I/O bandwidth under multitenant 
workloads. Moreover, administrators can add 
workload metrics and actions dynamically to 
the language while the system is running.

As Figure 2 shows, policies feed the SDS 
controller. Next, we depict the role that the 
SDS controller plays in changing the system’s 
behavior based on these policies.

Control Plane: SDS Controller
The SDS controller represents the IOStack’s con-
trol plane. When an administrator defines a 
policy, the SDS controller checks its syntax and 
compiles it via the DSL compiler.

For storage automation policies, the compi-
lation process ends by issuing an HTTP REST 
call to the appropriate filter-management API. 
Retaking the caching policy example, the REST 
call persists at the IOStack metadata store that 
caching should be enforced in container C1 (see 
P1 in Figure 2). From that point onward, data 
objects stored or retrieved from container C1 
will be cached at the data plane. Policies applied 
to targets are persistently stored and replicated 
in the IOStack metadata store (based on Redis; 
see http://redis.io).

The compilation process for policies with a 
workload-based condition (for example, objec-
tive-oriented) is more complex. To wit, the DSL 
compiles policies as policy actors8 (similar to 
Ryan Stutsman and his colleagues’ work9). Policy  
actors are processes that consume monitor-
ing information to check if the workload sat-
isfies the “WHEN clause” defined in the original 
policy. In the affirmative case, the policy actor  
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triggers a REST call to the appropriate filter-
management API for automatically enforcing 
the policy.

Objective-oriented policies are possible thanks 
to the IOStack monitoring system. IOStack pro-
vides these policies with monitoring information 
to build a control loop. Thus, policies can trig-
ger actions dynamically or execute distributed 
enforcement algorithms under workload changes.

IOStack integrates a message-oriented middle-
ware (MOM) to disseminate monitoring infor-
mation from the data plane (system resources 
metrics and tailored service metrics) to the con-
trol plane.3 Each workload metric is connected 
to a different queue at the MOM message broker. 
At the control plane, policy actors are subscribed 
to the workload metrics defined in the “WHEN 
clause,” enforcing a policy if the workload condi-
tion is satisfied. Figure 2 depicts this control loop.

Once a policy is stored as metadata in the 
metadata store, it’s accessible from storage fil-
ters at the data plane.

Data Plane: Filter Framework
At the data plane, filters are isolated software 
components that perform actual transformations  
on data objects. These transformations can be 
related to data content (such as compression or 
computation) or to data management (such as 
caching or I/O bandwidth differentiation).

Although you can integrate independent 
filter implementations in IOStack, we provide 

a filter framework that enables developers to 
run general-purpose code on object requests. 
IOStack borrows ideas from active storage lit-
erature10,11 as a means of building filters to 
enforce policies.

The core of IOStack’s filter framework is 
based on IBM Storlets (https://github.com/open-
stack/storlets). Storlets extend Swift with the 
capability to run computations near the data 
in a secure and isolated manner, making use 
of Docker (www.docker.com) as the application 
container. With Storlets a developer can write 
code, package and deploy it as a Swift object, 
and then explicitly invoke it on data objects 
as if the code was part of the Swift pipeline. 
Invoking a Storlet on a data object is done in 
an isolated manner so that the data accessible 
by the computation is only the object’s data and 
its user metadata. The Storlet engine executes a 
particular binary when the HTTP request for a 
data object contains the correct metadata head-
ers in which it’s specified.

The filter framework in IOStack has three 
main components: metadata and code manage-
ment; request classification; and sandboxed fil-
ter execution.

Metadata and code management. This module  
resides at the SDS controller and exposes a high- 
level API to enable the management of filter 
and tenant relationships, and to manage filter 
binaries.
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Figure 2. The IOStack architecture and filter framework integrated in OpenStack Swift. Administrators have the ability to 
designate storage policies that feed the software-defined storage (SDS) controller in order to automatically enforce filters.
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Request classification. Our framework discrim-
inates the filters to be applied on a particular 
data flow at the Swift’s proxy. Technically, an 
IOStack module in the Swift proxy middleware 
contacts the metadata store to infer the filters 
to be executed on a tenant’s request. Given 
that, it sets the appropriate HTTP headers to the 
incoming request (such as GET or PUT) for trig-
gering the subsequent filter execution. More-
over, in IOStack data objects are stored and 
replicated with an extended metadata to keep 
track of the executed filters that changed their 
content (such as compression). We use such 
metadata to trigger inverse transformations on 
GET requests.

Sandboxed filter execution. Upon the arrival of 
a tenant’s request with the appropriate HTTP 
headers, a filter can then be executed either at 
proxy or storage node stages; a decision that 
depends on the filter developer. For instance, a 
compression filter can efficiently be performed 
at the proxy, whereas computing tasks on data 
objects might be more suitable at the storage 
node.

public class StorletName implements  
IStorlet{

 @Override
 public void invoke (ArrayList 
<StorletInputStream> iStream,
  ArrayList<StorletOutput 
Stream> oStream,
  Map<String, String>  
parameters, StorletLogger logger)
  throws StorletException {

    //Filter code here
 }
}

The code snippet shows that developing a 
new filter in our framework is simple. A devel-
oper only needs to create a class that implements 
an interface (IStorlet), providing the actual 
data transformations on the object request 
streams (iStream, oStream) inside the invoke 
method. The ambition of IOStack is to ease the 
development of new filters by the community to 
become a rich open source SDS system.

As we show next, the IOStack filter frame-
work can support many filter types, such as 

data reduction, storage optimization, and gen-
eral computations on data objects.

Early Experiences
In our experiments, we execute in parallel work-
loads of tenants T1 (write-only) and T2 (read-
dominated). For T1, we resort to an object-storage 
benchmark (ssbench; see https://github.com/
swiftstack/ssbench) that uploads 32,000 syn-
thetic text objects of 10 Mbytes in size using four 
threads. T2 is represented by a Spark instance 
(three worker VMs and one master VM) that 
downloads an existing log file of 164 Gbytes 
in size (64-Mbyte splits, in .csv format). After 
downloading the log, T2 performs a simple word 
count task on the user_id field to calculate the 
number of user occurrences.

Our hardware consists of a 12-machine 
cluster formed by three high-end computing 
nodes and eight storage nodes, plus one node 
that acts as a proxy. Machines are connected 
via 1-gigabit switched-network links. Com-
pute nodes virtualize the Spark instance (T2), 
whereas storage nodes and the proxy run Swift 
and our IOStack prototype (the SDS controller 
and filter framework). We execute ssbench in 
other servers at Universitat Rovira i Virgili, so 
T1’s PUT requests access our cluster from the 
Internet. Our cluster runs a complete Open-
Stack Kilo installation.

Storage Automation under Multitenancy
Next, we reproduce a multitenant scenario 
somewhat based on Figure 1 to assess IOStack’s 
benefits compared to Swift.

Benefits for T1. T1 is a write-oriented tenant that 
uploads log-like data to the system. Therefore, we 
enforced in IOStack a compression policy — a filter 
that uses gzip — to tenant T1 to improve trans-
fer performance and minimize storage usage. 
Hence, scatter plots in Figures 3a and 3b show the 
throughput of T1’s PUT requests (ssbench) and T2’s 
GET requests (Spark), for both Swift and IOStack.

Observably, due to the parallelism of PUT 
requests, the Swift proxy can’t deliver to T1 
more than 30 Mbytes per second (Mbps) per 
request. Furthermore, when Spark starts down-
loading data, the throughput of both tenants 
decreases drastically: most concurrent requests 
exhibited a throughput around 4–6 Mbps.

Conversely, IOStack performs significantly 
better for PUT requests of T1 due to the enforcement  
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of a compression policy on highly redundant 
data. That is, the boxplot in Figure 3c demon-
strates that IOStack can achieve a median write 
throughput of 3× higher than Swift. Further-
more, as visible in Figure 3b’s scatter plot, T1’s 
PUT operations are only slightly affected when 
T2 starts its activity.

Apart from transfer gains, IOStack also 
involves important storage space savings. To 
wit, along the experiment T1 stored 312 Gbytes 
of data in Swift — considering three-way repli-
cation, the actual amount of consumed storage 
is 936 Gbytes. Due to the high redundancy of 
data produced by ssbench,9 IOStack compressed 
T1’s data to 0.1 percent of its original size.

Benefits for T2. T2 uses Spark to download a 
dataset and count the total number of user ID 
occurrences on it.

We noted that T2 only needs a fraction of the 
dataset to carry out such a task (for example, 
the user ID field). Thus, we enforced in IOStack 
a computing-close-to-data policy that filters 
on the server side the data actually needed by 
T2. Intuitively, such an active storage filter can 
yield two advantages for T2: first, to reduce the 
total amount of data to be transferred from the 
object store to the computing cluster; and sec-
ond, to decrease data processing times.

First, we noted that filtering the dataset at 
the source enables an important reduction of 

bandwidth for T2. Specifically, retrieving only 
the user ID field instead of all fields per line of 
log reduces the amount of outgoing bandwidth 
by 95.6 percent. Although the  throughput of T2’s 
transfers is lower for IOStack due to  filtering 
overhead and the smaller object size, the traffic 
reduction greatly amortizes these penalties.

A consequence for T2 of enabling IOStack 
to filter data objects at the source is that Spark 
processing times are much lower. That is, the 
Spark cluster exhibited a processing time of 
9,625 seconds and 4,009 seconds for Swift and 
IOStack, respectively. This means that IOStack 
reduced the processing time of Spark by 58 per-
cent compared to a regular Swift deployment.

Benefits for the administrator. These results 
are interesting from a performance perspec-
tive. However, the major benefit of IOStack is 
to provide a datacenter’s administrator with 
a simple way of enforcing storage policies 
to object requests. Overall, our experiments 
certify that IOStack enables easy and effec-
tive enforcement of a wide range of policies 
(data reduction and computation), which can 
greatly improve the operation of a multitenant 
object store.

Dynamic Provisioning
Next, we examine the operation of dynamic 
storage policies in IOStack. That is, Figure 4 
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Figure 3. Comparison of Swift and IOStack in a multitenant scenario. (a and b) Scatter plots show the 
throughput of tenants’ requests and (c) the boxplot depicts the throughput of PUT requests for T1.
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shows T1 performing PUT requests with increas-
ing intensity. Then we defined a dynamic 
policy that enforces data compression on T1’s 
requests if T1 exhibits 3 PUTs per second (see P2  
in Figure 2).

Figure 4 shows that our monitoring system 
updates the number of PUTs per second executed 
by T1 (the gray area). Then, the policy actor 
subscribed to the PUT/second metric detects that 
the workload of T1 satisfies the condition, and 
triggers the enforcement of a compression fil-
ter. From that point onward, requests are com-
pressed and, due to the redundancy of data 
objects, they exhibit higher throughput. This 
demonstrates the ability of IOStack to manage 
dynamic storage policies, which could apply to 
a wide variety of filters.

We presented IOStack, the first SDS architec-
ture for object storage (OpenStack Swift). 

IOStack enables policy-based provisioning: From 
an administrator viewpoint, policies define the 
enforcement of data services, namely filters, on 
a tenant’s requests. Moreover, in IOStack filters 
can be built as independent components or inte-
grated in our filter framework, which enables 
developers to write code — such as data reduction 
or optimization techniques — to be transparently 
executed on object requests. Our experiments 
certify that IOStack represents a step toward 
improving the administration and operation of 
object stores.

Despite its potential, IOStack is only the first 
step of an ambitious project (https://github.com/
iostackproject). For object storage, we’re cur-
rently working on the dynamic orchestration 
of filters in the IOStack filter framework, based 
on the resources that filters consume during 
their execution. We’re also exploring ways of 
automatically detecting conflicting filters — or 
wrong filter ordering — enforced on the same 
tenant to simplify filter management. Further-
more, we’re developing a block-storage version 
of IOStack for providing unified SDS manage-
ment of both block and object storage.
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