
10 Published by the IEEE Computer Society 1089-7801/16/$33.00 © 2016 IEEE IEEE INTERNET COMPUTING

Cl
ou

d
St

or
ag

e

IOStack: Software-Defined
Object Storage

Raúl Gracia-Tinedo, Pedro
García-López, Marc
Sánchez-Artigas, and
Josep Sampé
Universitat Rovira i Virgili, Spain

Yosef Moatti, Eran Rom,
and Dalit Naor
IBM Research–Haifa, Israel

Ramon Nou and
Toni Cortés
Barcelona Supercomputing Center,
Spain

William Oppermann
MPStor, Ireland

Pietro Michiardi
Institute Eurecom, France

As the complexity and scale of cloud storage systems grow, software-defined

storage (SDS) has become a prime candidate to simplify cloud storage

management. In this work, the authors present IOStack: the first SDS architecture

for object stores (such as OpenStack Swift). At the control plane, administrators

provision SDS services to tenants according to policies expressed via a high-

level DSL. At the data plane, IOStack helps build a variety of filters, ranging from

arbitrary computations on objects to data management mechanisms. Experiments

illustrate that IOStack enables easy and effective policy-based provisioning, which

can significantly improve the operation of a multitenant object store.

Nowadays, the amount of data
stored in cloud storage services is
growing at unprecedented rates,

as is as the variety and heterogene-
ity of workloads supported by data-
center infrastructures. At the same
time, datacenter administrators should
respond with increasing agility to
changing business demands in a cost-
effective manner, which is cumbersome
due to the complexity of large cloud
environments.

Software-defined storage (SDS) has
recently become a prime candidate to
simplify storage management in the
cloud. The incipient literature in the
field states that SDS should provide a
storage infrastructure with three items:
automation, optimization, and policy-
based provisioning.1,2 Typically, this is
achieved by explicitly decoupling the
control plane from the data plane at the
storage layer.

Automation enables a datacenter admin-
istrator to easily provision resources
and services to tenants. This includes
the virtualization of storage services
(volumes and filesystems) on top of per-
formance-specific servers and network
fabrics orchestrated by the SDS system.
Optimization refers to the seamless abil-
ity to automatically allocate resources to
meet the performance goals of the differ-
ent workloads.2 Finally, policy-based pro-
visioning lets the datacenter administrator
control I/O performance and other value-
added services through the deployment of
well-defined policies.1 This includes, for
instance, applying data-reduction tech-
niques, computation, and I/O bandwidth
differentiation on shared storage.3

Keeping this information in mind,
we present IOStack (http://iostack.eu),
the first SDS architecture for object
storage (such as OpenStack Swift). In
the following, we discuss what SDS

IOStack: Software-Defined Object Storage

MAy/JUNE 2016 11

technologies have contributed thus far, and how
IOStack meets and exceeds the capabilities of
current offerings.

Today’s SDS Technologies
Today, SDS has become a buzzword to describe
popular storage products such as EMC ViPR and
IBM Spectrum Storage. Such products promise
to make it easier for IT departments to handle
large amounts of storage, by uncoupling the
management from its underlying hardware.
Other products, such as MPStor Orkestra, tap
into storage virtualization and a centralized
controller to provision a variety of virtualized
storage and network resources.

Although these offerings have embraced this
new way of managing storage, SDS goes beyond

automated resource provisioning.1,2 A distinctive
feature of SDS is the ability to transparently
enforce transformations on data flows based on
simple policy definitions, as elaborated in IOFlow,1
the first seminal work in the field. (We detail more
on IOFlow and other cloud storage management
efforts in the related sidebar.) The outstanding fea-
ture of IOFlow is that it decouples the data plane
that enforces the policies from the control plane
where the policy logic lies, allowing I/O control
close to the source (typically a virtual machine, or
VM) and destination (shared storage) endpoints.

However, full abstraction from the underlying
hardware and storage stack isn’t easy to achieve.
For instance, the enforcement of policies can be
done at the file, block, and object levels, making it
difficult to apply the “one-size-fits-all” philosophy

Related Work in Cloud Storage Management

In trying to simplify storage management in the cloud, IOStack
benefits from the synergy between software-defined storage

(SDS) and active storage.

SDS
IOFlow1 describes the first SDS architecture — decoupled con-
trol and data planes — that provides policy-based provisioning.
Although this work is inspiring, there are profound differences
between IOFlow and our IOStack architecture. The most evident
difference is that IOFlow is designed for a particular file system,
whereas IOStack focuses on object storage. Moreover, IOFlow
has a specific scope; it provides low-level I/O services (routing
and classification) to control flows and guarantees I/O bandwidth
limits. In contrast, IOStack’s filter framework is more flexible
and supports arbitrary computations on object requests. This
enables heterogeneous filters to be easily added to the system.

Similarly, others2 have recently proposed a system called
Retro, which controls and monitors resource usage in a dis-
tributed system (control plane). Retro also enforces bandwidth
and latency policies to guarantee a certain service-level agree-
ment (or data plane). Although Retro isn’t a complete SDS sys-
tem, we believe that it’s particularly interesting as a reference
to build dynamic I/O bandwidth differentiation in IOStack.

Active Storage
The early concept of active disks3 — that is, hard drives with
computational capacity — has been borrowed by distributed
file system designers in high-performance computing environ-
ments (for example, active storage) for reducing the amount
of data movement between storage and compute nodes. Con-
cretely, Juan Piernas and his colleagues4 presented an active
storage implementation integrated in the Lustre file system
that provides flexible execution of code near data in the user

space. The industry also has taken remarkable steps in this
direction by implementing commercial distributed file systems
with compute power, such as the Panasas activescale file sys-
tem (PanFS; www.panasas.com/products/panfs) and Parallel
Virtual File System (PVFS; www.pvfs.org). Similarly, the filter
framework of IOStack enables computations on data objects
for policy enforcement. However, there are major differences
between IOStack and previous efforts: first, previous work
didn’t focus on object storage; and second, IOStack provides
isolated or sandboxed code execution.

Perhaps the closest technology to IOStack for leveraging
active storage (IBM Storlets; see https://github.com/openstack/
storlets) is ZeroCloud (www.zerovm.org/zerocloud.html). Both
IBM Storlets and ZeroCloud rely on application containers —
Docker and ZeroVM, respectively — for executing general-
purpose code on Swift objects. However, the use of ZeroVM is
more restrictive, as all code needs to be written in C and com-
piled via a proprietary tool chain. Further, Docker has advanced
tools, such as Docker Swarm (https://docs.docker.com/swarm)
or Zoe (http://zoe-analytics.eu), that will be exploited in IOStack
to orchestrate the execution of filters in Swift nodes.

References
1. E. Thereska et al., “Ioflow: A Software-Defined Storage Architecture,” Proc.

ACM Symp. Operating Systems Principles, 2013, pp. 182–196.

2. J. Mace et al., “Retro: Targeted Resource Management in Multi-Tenant Distrib-

uted Systems,” Proc. Usenix Symp. Networked Systems Design and Implementation,

2015; www.usenix.org/conference/nsdi15/technical-sessions/presentation/mace.

3. E. Riedel, G. Gibson, and C. Faloutsos, “Active Storage for Large-Scale Data

Mining and Multimedia Applications,” Proc. Very Large Databases, 1998, pp. 62–73.

4. J. Piernas, J. Nieplocha, and E.J. Felix, “Evaluation of Active Storage Strat-

egies for the Lustre Parallel File System,” Proc. ACM/IEEE Supercomputing,

2007, article no. 28.

Cloud Storage

12 www.computer.org/internet/ IEEE INTERNET COMPUTING

to SDS. Whereas IOFlow can be classified as a
file-level SDS architecture, there are no SDS sys-
tems for block and object storage yet.

Toward SDS for Object Storage
Object storage is becoming increasingly impor-
tant for many customers and applications,
because it’s ideal for solving the increasing
problems of data growth. As more data is gen-
erated, storage systems must grow at the same
pace, which is difficult to achieve with block-
based storage systems, for instance.

Object stores are suitable to store immutable
data that might be subject to future analysis,
such as server logs from Internet services,4 the
upcoming data deluge of the Internet of Things
(IoT),5 or even data coming from Web crawlers
and sensor networks. There are also important
synergies between object storage and Big Data
scenarios6: DataBricks (https://databricks.com) —
the company that develops Apache Spark —
resorts to Amazon Web Services to deliver
data processing services, including Simple Stor-
age Service (S3). These disparate use cases can
coexist in a multitenant object store, which
reinforces our motivation for building an SDS
architecture for object storage.

As a reference object store, we focus on
OpenStack Swift (or simply Swift; see http://
docs.openstack.org/developer/swift). Swift is
accessed via a REST API similar to Amazon
S3 (such as PUT or GET). Swift can be run on
commodity servers and has been architected
to automatically replicate data across available
disks for providing scalability, availability, and

data integrity. Internally, Swift consists of proxy
servers and storage nodes (see Figure 1). Proxy
servers route user requests to the storage nodes
that are the actual data containers and respon-
sible for data maintenance and availability.

To better understand our goals, let’s draw
an example of a multitenant scenario. Imag-
ine an object store and three different tenants
that access the system concurrently. On the one
hand, tenant T1 represents several servers that
are uploading data gathered from a sensor net-
work. On the other hand, tenants T2 and T3 rep-
resent sets of VMs in a computing cluster that
perform computations on data objects contain-
ing logs (see Figure 1).

In such a scenario, a datacenter administra-
tor might wish to define distinct policies for these
tenants to optimize the system’s operation or to
enforce certain service-level agreements (SLAs).
Intuitively, she could apply a data compres-
sion policy to T1 for reducing its storage space
demands, given that log-like data is potentially
redundant.7 Tenants T2 and T3, however, might
apply data filters to import only the fraction of a
dataset actually needed for a specific computation
task, thus reducing download traffic.4 Further, the
administrator might wish to assign different I/O
bandwidth limits to the requests of T2 and T3.

As you can infer, the enforcement of these
policies could permit an object store to manage
concurrent workloads more efficiently. How-
ever, today’s object stores lack a flexible and
transparent way of enforcing storage policies
on object requests. This is precisely the objec-
tive of IOStack.

Figure 1. Example of an OpenStack Swift deployment (proxy nodes in dark blue, storage nodes in light blue)
concurrently accessed by various tenants. Storage policies can be enforced on object requests to optimize the system
and enrich the service.

VM
T2

VM
T2

VM
T2

VM
T3

VM
T3

Compute cluster
(T2 and T3)

Object store

Servers storing
sensor information

(T1)

VM
T3

IOStack: Software-Defined Object Storage

MAy/JUNE 2016 13

IOStack’s Design
The previous example opens the door to apply stor-
age optimizations under multitenant workloads,2
as well as to offer quality-of-service (QoS) differ-
entiated policies based on a tenant’s requirements.
Moreover, from a datacenter administrator’s per-
spective, these goals must be achieved transpar-
ently, involving minimal human intervention.

To realize this vision, we equipped IOStack
with the following features:

•	 Policy-based provisioning. At the control
plane, administrators provision SDS services
to tenants via policies. Policies might target
storage automation, such as enforcing com-
pression or caching to a tenant’s requests.
Administrators might also define policies
that target a certain objective or SLA. In this
case, IOStack provides policies with a mon-
itoring-based control loop to achieve their
objective under dynamic workloads.

•	 Filters. At the data plane, filters perform
actual data transformations on object
requests to enforce storage policies. IOStack
has a suitable architecture to favor the inte-
gration of new filters by third parties. IOStack
also includes a ready-to-use filter framework
that enables the execution of user code on
object requests at different stages along an
object’s write/read path. A developer integrat-
ing a new filter only needs to contribute the
filter’s logic; the deployment and execution of
the filter is managed by IOStack.

Next, we describe the design of policies in
IOStack.

Administration: Storage Policies
Storage policies can be seen as a means of pro-
viding storage automation and/or SLA targets.
In IOStack, datacenter administrators simply
define provisioning policies to tenants via a sim-
ple domain-specific language (DSL). Each policy
definition contains a target (for example, TEN-
ANT or CONTAINER), an action (DO clause), and
optionally, a workload-based condition (WHEN
clause). Hence, an administrator might define:

P1:FOR CONTAINER C1 DO SET CACHING
P2:FOR TENANT T1 WHEN PUTS_SEC > 3 DO
SET COMPRESSION
P3:FOR TENANT T2 DO SET BANDWIDTH WITH
PARAM1=30MBps

In this example, the first policy represents a
storage-automation policy, as the system auto-
matically performs data caching on container
C1 after the definition of this policy. The second
policy goes further, enabling data compression
on tenant T1’s requests if its throughput exceeds
three PUTs per second. Similarly, the last pol-
icy aims at providing a certain amount of I/O
bandwidth to T2, considering that multiple ten-
ants might be transferring data concurrently.
As we show later, objective-oriented policies
require monitoring information to achieve their
objectives.

Our DSL also supports grouping policies into
QoS levels; that is, GOLD tenants might benefit
from data compression, active storage tasks,
and high bandwidth limits, whereas BRONZE
tenants might receive only a small fraction of
the available I/O bandwidth under multitenant
workloads. Moreover, administrators can add
workload metrics and actions dynamically to
the language while the system is running.

As Figure 2 shows, policies feed the SDS
controller. Next, we depict the role that the
SDS controller plays in changing the system’s
behavior based on these policies.

Control Plane: SDS Controller
The SDS controller represents the IOStack’s con-
trol plane. When an administrator defines a
policy, the SDS controller checks its syntax and
compiles it via the DSL compiler.

For storage automation policies, the compi-
lation process ends by issuing an HTTP REST
call to the appropriate filter-management API.
Retaking the caching policy example, the REST
call persists at the IOStack metadata store that
caching should be enforced in container C1 (see
P1 in Figure 2). From that point onward, data
objects stored or retrieved from container C1
will be cached at the data plane. Policies applied
to targets are persistently stored and replicated
in the IOStack metadata store (based on Redis;
see http://redis.io).

The compilation process for policies with a
workload-based condition (for example, objec-
tive-oriented) is more complex. To wit, the DSL
compiles policies as policy actors8 (similar to
Ryan Stutsman and his colleagues’ work9). Policy
actors are processes that consume monitor-
ing information to check if the workload sat-
isfies the “WHEN clause” defined in the original
policy. In the affirmative case, the policy actor

Cloud Storage

14 www.computer.org/internet/ IEEE INTERNET COMPUTING

triggers a REST call to the appropriate filter-
management API for automatically enforcing
the policy.

Objective-oriented policies are possible thanks
to the IOStack monitoring system. IOStack pro-
vides these policies with monitoring information
to build a control loop. Thus, policies can trig-
ger actions dynamically or execute distributed
enforcement algorithms under workload changes.

IOStack integrates a message-oriented middle-
ware (MOM) to disseminate monitoring infor-
mation from the data plane (system resources
metrics and tailored service metrics) to the con-
trol plane.3 Each workload metric is connected
to a different queue at the MOM message broker.
At the control plane, policy actors are subscribed
to the workload metrics defined in the “WHEN
clause,” enforcing a policy if the workload condi-
tion is satisfied. Figure 2 depicts this control loop.

Once a policy is stored as metadata in the
metadata store, it’s accessible from storage fil-
ters at the data plane.

Data Plane: Filter Framework
At the data plane, filters are isolated software
components that perform actual transformations
on data objects. These transformations can be
related to data content (such as compression or
computation) or to data management (such as
caching or I/O bandwidth differentiation).

Although you can integrate independent
filter implementations in IOStack, we provide

a filter framework that enables developers to
run general-purpose code on object requests.
IOStack borrows ideas from active storage lit-
erature10,11 as a means of building filters to
enforce policies.

The core of IOStack’s filter framework is
based on IBM Storlets (https://github.com/open-
stack/storlets). Storlets extend Swift with the
capability to run computations near the data
in a secure and isolated manner, making use
of Docker (www.docker.com) as the application
container. With Storlets a developer can write
code, package and deploy it as a Swift object,
and then explicitly invoke it on data objects
as if the code was part of the Swift pipeline.
Invoking a Storlet on a data object is done in
an isolated manner so that the data accessible
by the computation is only the object’s data and
its user metadata. The Storlet engine executes a
particular binary when the HTTP request for a
data object contains the correct metadata head-
ers in which it’s specified.

The filter framework in IOStack has three
main components: metadata and code manage-
ment; request classification; and sandboxed fil-
ter execution.

Metadata and code management. This module
resides at the SDS controller and exposes a high-
level API to enable the management of filter
and tenant relationships, and to manage filter
binaries.

Storage automation

SDS controller SDS
metadata

Objective policy

Monitoring
service

Pr
ox

y
m

id
dl

ew
ar

e

Policy
actors

IOStack �lter framework

IO bandwidth
differentiation

Service NPolicies DSL
Compiler

IOStack control plane IOStack data plane

P1: FOR CONTAINER C1
DO SET CACHING WHEN PUTS_SEC > 3

DO SET COMPRESSION

API

API

API

P2

P3

IOStack �ltersIOStack architecture

Filter management calls Metadata �ows

OpenStack Swift Data objects

Filter enforcement
(storlets)

Request
discrimination

Swift proxy Swift storage nodes

Data �owsMonitoring info

Figure 2. The IOStack architecture and filter framework integrated in OpenStack Swift. Administrators have the ability to
designate storage policies that feed the software-defined storage (SDS) controller in order to automatically enforce filters.

IOStack: Software-Defined Object Storage

MAy/JUNE 2016 15

Request classification. Our framework discrim-
inates the filters to be applied on a particular
data flow at the Swift’s proxy. Technically, an
IOStack module in the Swift proxy middleware
contacts the metadata store to infer the filters
to be executed on a tenant’s request. Given
that, it sets the appropriate HTTP headers to the
incoming request (such as GET or PUT) for trig-
gering the subsequent filter execution. More-
over, in IOStack data objects are stored and
replicated with an extended metadata to keep
track of the executed filters that changed their
content (such as compression). We use such
metadata to trigger inverse transformations on
GET requests.

Sandboxed filter execution. Upon the arrival of
a tenant’s request with the appropriate HTTP
headers, a filter can then be executed either at
proxy or storage node stages; a decision that
depends on the filter developer. For instance, a
compression filter can efficiently be performed
at the proxy, whereas computing tasks on data
objects might be more suitable at the storage
node.

public class StorletName implements
IStorlet{

 @Override
 public void invoke (ArrayList
<StorletInputStream> iStream,
 ArrayList<StorletOutput
Stream> oStream,
 Map<String, String>
parameters, StorletLogger logger)
 throws StorletException {

 //Filter code here
 }
}

The code snippet shows that developing a
new filter in our framework is simple. A devel-
oper only needs to create a class that implements
an interface (IStorlet), providing the actual
data transformations on the object request
streams (iStream, oStream) inside the invoke
method. The ambition of IOStack is to ease the
development of new filters by the community to
become a rich open source SDS system.

As we show next, the IOStack filter frame-
work can support many filter types, such as

data reduction, storage optimization, and gen-
eral computations on data objects.

Early Experiences
In our experiments, we execute in parallel work-
loads of tenants T1 (write-only) and T2 (read-
dominated). For T1, we resort to an object-storage
benchmark (ssbench; see https://github.com/
swiftstack/ssbench) that uploads 32,000 syn-
thetic text objects of 10 Mbytes in size using four
threads. T2 is represented by a Spark instance
(three worker VMs and one master VM) that
downloads an existing log file of 164 Gbytes
in size (64-Mbyte splits, in .csv format). After
downloading the log, T2 performs a simple word
count task on the user_id field to calculate the
number of user occurrences.

Our hardware consists of a 12-machine
cluster formed by three high-end computing
nodes and eight storage nodes, plus one node
that acts as a proxy. Machines are connected
via 1-gigabit switched-network links. Com-
pute nodes virtualize the Spark instance (T2),
whereas storage nodes and the proxy run Swift
and our IOStack prototype (the SDS controller
and filter framework). We execute ssbench in
other servers at Universitat Rovira i Virgili, so
T1’s PUT requests access our cluster from the
Internet. Our cluster runs a complete Open-
Stack Kilo installation.

Storage Automation under Multitenancy
Next, we reproduce a multitenant scenario
somewhat based on Figure 1 to assess IOStack’s
benefits compared to Swift.

Benefits for T1. T1 is a write-oriented tenant that
uploads log-like data to the system. Therefore, we
enforced in IOStack a compression policy — a filter
that uses gzip — to tenant T1 to improve trans-
fer performance and minimize storage usage.
Hence, scatter plots in Figures 3a and 3b show the
throughput of T1’s PUT requests (ssbench) and T2’s
GET requests (Spark), for both Swift and IOStack.

Observably, due to the parallelism of PUT
requests, the Swift proxy can’t deliver to T1
more than 30 Mbytes per second (Mbps) per
request. Furthermore, when Spark starts down-
loading data, the throughput of both tenants
decreases drastically: most concurrent requests
exhibited a throughput around 4–6 Mbps.

Conversely, IOStack performs significantly
better for PUT requests of T1 due to the enforcement

Cloud Storage

16 www.computer.org/internet/ IEEE INTERNET COMPUTING

of a compression policy on highly redundant
data. That is, the boxplot in Figure 3c demon-
strates that IOStack can achieve a median write
throughput of 3× higher than Swift. Further-
more, as visible in Figure 3b’s scatter plot, T1’s
PUT operations are only slightly affected when
T2 starts its activity.

Apart from transfer gains, IOStack also
involves important storage space savings. To
wit, along the experiment T1 stored 312 Gbytes
of data in Swift — considering three-way repli-
cation, the actual amount of consumed storage
is 936 Gbytes. Due to the high redundancy of
data produced by ssbench,9 IOStack compressed
T1’s data to 0.1 percent of its original size.

Benefits for T2. T2 uses Spark to download a
dataset and count the total number of user ID
occurrences on it.

We noted that T2 only needs a fraction of the
dataset to carry out such a task (for example,
the user ID field). Thus, we enforced in IOStack
a computing-close-to-data policy that filters
on the server side the data actually needed by
T2. Intuitively, such an active storage filter can
yield two advantages for T2: first, to reduce the
total amount of data to be transferred from the
object store to the computing cluster; and sec-
ond, to decrease data processing times.

First, we noted that filtering the dataset at
the source enables an important reduction of

bandwidth for T2. Specifically, retrieving only
the user ID field instead of all fields per line of
log reduces the amount of outgoing bandwidth
by 95.6 percent. Although the throughput of T2’s
transfers is lower for IOStack due to filtering
overhead and the smaller object size, the traffic
reduction greatly amortizes these penalties.

A consequence for T2 of enabling IOStack
to filter data objects at the source is that Spark
processing times are much lower. That is, the
Spark cluster exhibited a processing time of
9,625 seconds and 4,009 seconds for Swift and
IOStack, respectively. This means that IOStack
reduced the processing time of Spark by 58 per-
cent compared to a regular Swift deployment.

Benefits for the administrator. These results
are interesting from a performance perspec-
tive. However, the major benefit of IOStack is
to provide a datacenter’s administrator with
a simple way of enforcing storage policies
to object requests. Overall, our experiments
certify that IOStack enables easy and effec-
tive enforcement of a wide range of policies
(data reduction and computation), which can
greatly improve the operation of a multitenant
object store.

Dynamic Provisioning
Next, we examine the operation of dynamic
storage policies in IOStack. That is, Figure 4

0

20

40

60

80

100
OpenStack Swift

T
hr

ou
gh

pu
t

(M
by

te
s/

s)

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

0

(b) (c)

(a) 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

0

20

40

60

80

100
IOStack

Experiment instant (seconds)

T
hr

ou
gh

pu
t

(M
by

te
s/

s)

Swift IOStack
0

20

40

60

80

100

R
eq

ue
st

 t
hr

ou
gh

pu
t

(M
by

te
s/

s)

Figure 3. Comparison of Swift and IOStack in a multitenant scenario. (a and b) Scatter plots show the
throughput of tenants’ requests and (c) the boxplot depicts the throughput of PUT requests for T1.

IOStack: Software-Defined Object Storage

MAy/JUNE 2016 17

shows T1 performing PUT requests with increas-
ing intensity. Then we defined a dynamic
policy that enforces data compression on T1’s
requests if T1 exhibits 3 PUTs per second (see P2
in Figure 2).

Figure 4 shows that our monitoring system
updates the number of PUTs per second executed
by T1 (the gray area). Then, the policy actor
subscribed to the PUT/second metric detects that
the workload of T1 satisfies the condition, and
triggers the enforcement of a compression fil-
ter. From that point onward, requests are com-
pressed and, due to the redundancy of data
objects, they exhibit higher throughput. This
demonstrates the ability of IOStack to manage
dynamic storage policies, which could apply to
a wide variety of filters.

We presented IOStack, the first SDS architec-
ture for object storage (OpenStack Swift).

IOStack enables policy-based provisioning: From
an administrator viewpoint, policies define the
enforcement of data services, namely filters, on
a tenant’s requests. Moreover, in IOStack filters
can be built as independent components or inte-
grated in our filter framework, which enables
developers to write code — such as data reduction
or optimization techniques — to be transparently
executed on object requests. Our experiments
certify that IOStack represents a step toward
improving the administration and operation of
object stores.

Despite its potential, IOStack is only the first
step of an ambitious project (https://github.com/
iostackproject). For object storage, we’re cur-
rently working on the dynamic orchestration
of filters in the IOStack filter framework, based
on the resources that filters consume during
their execution. We’re also exploring ways of
automatically detecting conflicting filters — or
wrong filter ordering — enforced on the same
tenant to simplify filter management. Further-
more, we’re developing a block-storage version
of IOStack for providing unified SDS manage-
ment of both block and object storage.

Acknowledgments
This work has been funded by the European Union through

project H2020 “IOStack: Software-Defined Storage for Big

Data” (644182) and by the Spanish Ministry of Science

and Innovation through project “Servicios Cloud y Redes

Comunitarias” (TIN-2013-47245-C2-2-R).

References
1. E. Thereska et al., “Ioflow: A Software-Defined Stor-

age Architecture,” Proc. ACM Symp. Operating Systems

Principles, 2013, pp. 182–196.

2. A. Alba et al., “Efficient and Agile Storage Management

in Software Defined Environments,” IBM J. Research

and Development, vol. 58, nos. 2/3, 2014, pp. 1–5.

3. J. Mace et al., “Retro: Targeted Resource Manage-

ment in Multi-Tenant Distributed Systems,” Proc.

Usenix Symp. Networked Systems Design and Imple-

mentation, 2015; www.usenix.org/conference/nsdi15/

technical-sessions/presentation/mace.

4. D. Logothetis et al., “In-Situ MapReduce for Log Pro-

cessing,” Proc. Usenix Ann. Technical Conf., 2011, p. 9.

5. L. Atzori, A. Iera, and G. Morabito, “The Internet of

Things: A Survey,” Computer Networks, vol. 54, no. 15,

2010, pp. 2787–2805.

6. R. Riffe, “Big Data Needs Software-Defined Storage,”

InfoWorld, 9 Apr. 2014; www.infoworld.com/arti-

cle/2610828/infrastructure-storage/big-data-needs-

software-defined-storage.html.

7. R. Gracia-Tinedo et al., “SDGen: Mimicking Datasets for

Content Generation in Storage Benchmarks,” Proc. Usenix

Conf. File and Storage Technologies, 2015, pp. 317–330.

8. E. Zamora-Gómez, P. García-López, and R. Mondéjar,

“Continuation Complexity: A Callback Hell for Distrib-

uted Systems,” LNCS 9253, Springer, 2015, pp. 286–298.

9. R. Stutsman, C. Lee, and J. Ousterhout. “Experience

with Rules-Based Programming for Distributed, Con-

current, Fault-Tolerant Code,” Proc. Usenix Ann. Tech-

nical Conf., 2015, pp. 17–30.

10. E. Riedel, G. Gibson, and C. Faloutsos, “Active Storage

for Large-Scale Data Mining and Multimedia Applica-

tions,” Proc. Very Large Databases, 1998, pp. 62–73.

0 50 100 150 200 250 300
1

1.5

2

2.5

3

3.5

4

4.5

5

Experiment instant (seconds)

T
1’

s
PU

T
s

pe
r

se
co

nd

10

20

30

40

50

60

70

80

90

T
1

w
ri

te
 r

eq
ue

st
 t

hr
ou

gh
pu

t
(M

by
te

s/
s)

T1’s operations per second PUT throughput (ssbench data)

Workload-based condition
is satis�ed at this point.

Figure 4. Example of a dynamic storage policy. When T1’s requests
reach the workload condition, the system automatically triggers
compression.

Cloud Storage

18 www.computer.org/internet/ IEEE INTERNET COMPUTING

11. J. Piernas, J. Nieplocha, and E.J. Felix, “Evaluation of

Active Storage Strategies for the Lustre Parallel File

System,” Proc. ACM/IEEE Supercomputing, 2007, arti-

cle no. 28.

Raúl Gracia-Tinedo is a postdoc in the Architectures and

Telematic Services Research Group at Universitat

Rovira i Virgili (URV), Spain. His research interests

include distributed storage management, cloud com-

puting, and performance evaluation of systems. Gra-

cia-Tinedo received his PhD in computer engineering

from URV in 2015. He received the Best Dataset Award

at the 2015 ACM Sigcomm Internet Measurement Con-

ference. Contact him at raul.gracia@urv.cat.

Pedro García-López is a professor in the Computer

Engineering and Mathematics Department at

URV, where he also leads the Architectures and

Telematic Services Research Group. His research

interests include distributed systems, peer-to-peer

systems, cloud storage, software architectures,

and middleware and collaborative environments.

García-López has a PhD in computer science from

University of Murcia. Contact him at pedro.garcia@

urv.cat.

Marc Sánchez-Artigas is an assistant professor at URV. His

research interests include building massive distrib-

uted systems and clouds, including peer-to-peer and

novel storage systems. Sánchez-Artigas has a PhD in

computer science from the Universitat Pompeu Fabra,

 Barcelona. He received the Best Paper Award at the 2007

IEEE Local Computer Networks Conference. Contact him

at marc.sanchez@urv.cat.

Josep Sampé is a PhD student in the Department of Com-

puter Engineering and Mathematics at URV. His

research interests include software-defined storage

management and cloud computing. Sampé has a BSc

in computer engineering and mathematics from URV.

Contact him at josep.sampe@urv.cat.

Yosef Moatti is a member of the research staff at IBM

Research–Haifa, Israel. His research interests include

Big Data analytics and storage frameworks. Moatti has

a PhD in computer science from Télécom ParisTech.

Contact him at moatti@il.ibm.com.

Eran Rom is a member of the research staff at IBM

Research–Haifa. His research interests include distrib-

uted, scalable, and available storage systems. Rom has

an MS in computer science from Tel-Aviv University.

Contact him at eranr@il.ibm.com.

Dalit Naor is a senior manager of the Cloud Platforms

Department at IBM Research–Haifa and a senior tech-

nical staff member. Her research interests include

cloud object stores and its integration with analytics,

and specializes in storage aspects such as cloud stor-

age, data reduction techniques, long-term digital pres-

ervation, and power-efficient storage systems. Naor

has a PhD in computer science from the University of

California, Davis. Contact her at dalit@il.ibm.com.

Ramon Nou is a member of the Storage Systems Team at

the Barcelona Supercomputing Center, Spain. His

research interests include energy efficiency, optimiza-

tion, simulation, and storage systems. Nou has a PhD

in computer science from Universitat Politècnica de

Catalunya (UPC). Contact him at ramon.nou@bsc.es.

Toni Cortés is an associate professor at the Computer

Architecture Department at UPC and the manager of

the Storage System Research Group at the Barcelona

Supercomputing Center. His research interests include

operating systems, middleware, and runtimes for par-

allel machines and clusters of workstations. Cortés has

a PhD in computer science from UPC. Contact him at

toni.cortes@bsc.es.

William Oppermann is a co-founder of MPStor. His research

interests include the information and communications

technologies industry, and in particular the enterprise

data storage industry. Oppermann has an MscEng in

engineering from University College Dublin. Contact

him at wo@mpstor.com

Pietro Michiardi a professor of computer science at Insti-

tute Eurecom, where he leads the Distributed Sys-

tems Group. His research interests include large-scale

distributed systems (including data processing and

data storage), and scalable algorithm design to mine

massive amounts of data. Michiardi has a PhD in

computer science from Telecom ParisTech, as well

as an HDR (Habilitation) from Universidad Nacional

de San Agustín. Contact him at pietro.michiardi@

eurecom.fr.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

