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Abstract—Data sharing in Personal Clouds blurs the lines
between on-line storage and content distribution with a strong
social component. Such social information may be exploited by
researchers to devise optimized data management techniques for
Personal Clouds. Unfortunately, due their proprietary nature,
data sharing is one of the least studied facets of these systems.

In this work, we present the first study of data sharing in
a private Personal Cloud. Concretely, we contribute a dataset
collected at the metadata back-end of NEC: an enterprise oriented
Personal Cloud. First, our analysis provides a deep inspection of
the storage layer of NEC, comparing it with a well-known public
vendor (UbuntuOne). Second, we study the social structure of
NEC user communities, as well as the storage characteristics of
user sharing links via multiplex network techniques.

Finally, we discuss a battery of data management optimizations
for NEC derived from our findings, which may be of independent
interest for other similar systems. Our proposals include content
distribution, caching and data placement. We believe that both
our study and dataset will foster further research in this field.

Index Terms—Cloud Storage; Personal Clouds; Social Network
Analysis; Measurement

I. INTRODUCTION

Today, Personal Cloud services are becoming a widespread

technology among users and organizations to store, synchro-

nize and share files [1], [2], [3], [4]. Due to its flexibility,

the Personal Cloud model has been successfully materialized

in different forms; while most users are attracted by well-

kown public providers, such as Dropbox and Box, enterprises

also resort to private or hybrid Personal Cloud solutions (e.g.,

ownCloud1, StackSync2) to retain the control of their data.

From a Personal Cloud viewpoint, to satisfy ever-increasing

efficiency and scalability service requirements calls for devis-

ing advanced data management techniques [5]. To wit, desktop

clients contact the server infrastructure to upload and/or down-

load files, or even to modify already stored ones. Behind the

scenes, the data management activity of a Personal Cloud can

be complex, involving data compression, deduplication and

content distribution techniques, among others [6], [5], [7].

Despite the associated technical complexity, events like the

recent shut down of UbuntuOne evidence that Personal Clouds

need to understand the activity of users and optimize data

management accordingly [8], [2]. Otherwise, vendors might

suffer excessive storage costs related to their daily workloads.

1https://owncloud.org/
2http://stacksync.org/

In this sense, one of the services that accounts for an impor-

tant fraction of data management activity is data sharing [1].

That is, a major promise of a Personal Cloud service is en-

abling users with easy and integrated data sharing capabilities.

Within the service domains, users can share data in various

ways (e.g., public download link, native sharing) across a

variety of devices and operating systems (OSes).

Personal Clouds blur the lines between a storage and a

content distribution service with a strong social component.

That is, sharing interactions within the system are driven by

the work or social links of users. In our view, to analyze the

social component of Personal Clouds will provide important

insights of how users share data in these systems. Even more,

such information may be key to derive novel data management

optimizations or to effectively tailor existing ones.

Unfortunately, while previous research works targeted other

technical aspects of public Personal Clouds (e.g., protocols,

storage management) [6], [5], [7], data sharing is perhaps one

of the least studied facets of these systems. The main reason

is that analyzing data sharing interactions in a Personal Cloud

with high resolution requires accessing the metadata of the

service back-end. However, given the proprietary nature of

most services, such a kind of analysis is not always possible.

To fill this gap, in this work we analyze the sharing activity

of NEC3: a private, enterprise-oriented Personal Cloud. The

NEC Personal Cloud supports hundreds of enterprises and

thousands of users/employees making regular use of the ser-

vice. Concretely, we provide an analysis of the storage layer

and sharing activity of NEC thanks to the metadata collected

by the provider itself. Such a unique dataset has allowed us to

study the sharing activity of a private vendor in a high level

of detail. Further, we can also compare characteristics of NEC

with other public vendors. In summary, our contributions are:

• Storage and user activity analysis: First, we focus on un-

derstanding the characteristics of files stored and shared

in NEC compared with a public vendor (UbuntuOne), as

well as the activity of users.

• Social network implications: We analyze the NEC data

sharing network, including its topological characteristics,

the clustering among users and the relationship between

user connectivity and activity in the system.

• Multiplex network analysis: We also resort to multiplex

3http://www.nec.com/en/global/solutions/cloud/portfolio/storage.html



network techniques to correlate the different networks

and user roles emerging from defining different types of

sharing links across users (e.g., content types, intensity).

• Potential optimizations for Personal Clouds: From our

analysis, we discuss data management optimizations for

NEC-like systems, such as: i) Socially-informed caching

for highly shared files, ii) peer-to-peer file synchroniza-

tion for clustered user groups, or iii) topology-based data

placement at the server infrastructure, among others.

• Publicly available dataset: Finally, the collected dataset

is publicly available online4. We believe that this dataset

will help to foster further research in this field.

The rest of this paper is structured as follows. We discuss

the related work in Section II. Our analysis methodology and

dataset is described in Section III. The analysis of data sharing

activity in NEC encompasses sections IV, V and VI. In Section

VII we discuss data management optimizations derived from

our findings. We conclude in Section VIII.

II. RELATED WORK

Recently, Personal Cloud services have attracted the atten-

tion of the research community due to their broad adoption

and commercial popularity. The seminal work of Drago et al.

[1] presented an external measurement of Dropbox in both

a university campus and residential networks. They analyzed

the traffic generated by users, as well as the workflow and

architecture of the service. Similarly, other works tried to infer

the closed architecture and operation of Personal Clouds, such

in the case of Wuala [3] and UbuntuOne [2].

As a motivation for this work, we found particularly inter-

esting research efforts devoted to improve data management

in Personal Clouds. Li et al. investigated the problem of

frequent file modifications in the synchronization client of

Dropbox [6], proposing a solution to this data management

problem. Authors in [5], [7] extended this effort and provided

a comprehensive analysis of the data management techniques

integrated in desktop clients (e.g., compression, deduplication,

etc.). These works show the importance understanding the

behavior of users to optimize data management in this setting.

However, none of the previous works proposed data man-

agement techniques that benefit from social information re-

lated to data sharing. The main problem is the absence of

data sharing characterizations in the Personal Cloud arena.

To our knowledge, the only attempt on measuring data

sharing in Personal Clouds is [9]. In this work, Gonçalves et

al. characterize data and metadata flows of Dropbox desktop

clients related to shared folders in a campus. However, the

external and “black box” approach adopted in [9] limits

the insights of this study. That is, authors did not provide

information about the social topology of Dropbox users in

the campus, a characterization of sharing links or the files

that users share, to name a few. This work overcomes these

limitations thanks to the back-end information of our dataset.

Our analysis of data sharing in Personal Clouds is partially

inspired by existing works of social network analysis [10],

[11]. Social network analysis enables us to understand topo-

logical characteristics of user communities. In particular, we

4http://cloudspaces.eu/results/datasets

Fig. 1. Architecture of NEC Personal Cloud back-end (Madrid datacenter).

found specially interesting the work of Iamnitchi et al. [12]

that examines in depth the data sharing network of different

client-server and peer-to-peer systems. However, we go a step

further by applying multi-layer or multiplex network analy-

sis [13], [14], [15] to illustrate how users are interconnected

depending on different link types (e.g., intensity, content type).

Moreover, our study is the first to compare the storage layer

of a private vendor (NEC) with a public one (UbuntuOne). The

new insights provided by our analysis enable us to discuss the

application of data management techniques in Personal Clouds

(client/server sides) to motivate further research in the field.

III. BACKGROUND AND METHODOLOGY

In this section, we provide the necessary background to

facilitate the understanding of our study. This includes a

description of the architecture of NEC, as well as a definition

of the metrics and methods used in our analysis. Moreover,

we provide a description of the collected dataset.

A. Overview of the NEC Personal Cloud

As other Personal Clouds [1], [2], [16], NEC5 exhibits a 3-

tier architecture consisting of metadata service, storage back-

end and desktop or mobile/web clients (see Fig. 1).

In the back-end of NEC, we find the metadata service and

the data store. On the one hand, the metadata service of

NEC is composed of 3 elements: WebDav servers, Advanced

Features servers and Web portal. Similarly to ownCloud6, NEC

relies in WebDav [17] as a protocol for providing remote file

management. These servers receive client requests related to

the management of files, such as creating or deleting files.

The Advanced Features service in NEC carries out relevant

tasks to its internal operation, such as maintaining the logical

relationships among users and organizations or tracking the

storage quota of users. However, the most important function

of this service is to manage sharing relationships of users;

sharing links are persistently stored in a database (SQL

Server). Finally, the Web portal provides users with means

for managing their files via a regular Web browser.

On the other hand, the actual file contents of users are stored

in an OpenStack Swift cluster, which offers simplified storage

management and high scalability. In fact, other services such

as Dropbox and UbuntuOne are known to use object storage to

store user files [1], [2], [16]. As shown in Fig. 1, the WebDav

5NEC Personal Cloud deployment at Madrid (Spain) SaaS facilities.
6http://owncloud.org
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Fig. 2. Graph modeling in our social network analysis.

servers access Swift to serve user data operations. Moreover,

NEC delegates authentication service to OpenStack KeyStone.
Outside the datacenter, NEC desktop clients are perhaps one

of the most popular ways of accessing the service. They are

client-side software that interact with the server infrastructure

via a synchronization protocol that defines data and metadata

operations. NEC also provides alternative access to the storage

service, such as mobile and Web clients.

B. Network Analysis Concepts and Metrics

First, let us describe a social network as a directed graph

G(V,E), where V is the set of users represented as nodes

and E the set of directed links that represent their sharing

interactions. We define a directed link as vi
w
→ vj to express

that user vi shared w files with vj . In our analysis, this model

facilitates to distinguish between producers and consumers of

shared content, as well as the intensity of links (see Fig. 2a).
The connectivity or degree of a node v, kv , is the number of

attached edges. As we model the social network as a directed

graph, we distinguish between out and in degrees. Moreover,

as NEC enables users to share data across its own devices and

accounts, we also consider self links.
To measure clustering, we resort to both the local clustering

coefficient and the network clustering. The former metric,

namely Cv , is the ratio of the number of existing links over

the number of possible links among its neighbors. For directed

graphs, it is defined as: Cv = ev/(kv(kv − 1)), where kv
is the number of neighbors of v and ev is the number of

connected pairs among all neighbors of v. Alternatively, we

use the network clustering coefficient (C) that represents the

mean of local clusterings: C = 1

|V |

∑
v∈V Cv .

We also resort to basic multiplex network analysis [13],

[14], [15]. In a nutshell, multiplex or multi-layer analysis

describes multiple link types among the same set of nodes

within a network. As shown in Fig. 2b, graphs emerging from

defining different link types (e.g., docs, pictures) among nodes

are embedded into separate layers. In this paper, multiplex

analysis helps us to understand the similarity or overlap

across network layers (links, degree). Thus, we first use the

link overlap between two layers Gi(Ei, Vi) and Gj(Ej , Vj)

expressed by the Jaccard coefficient (J ) as J =
|Ei

⋂
Ej |

|Ei

⋃
Ej |

. We

also use the degree overlap, given by the Pearson correlation

coefficient between the node degrees in pairs of layers.

Users or nodes 8, 393

Connected components 1, 034

Sharing links or edges 43, 244

Sharing trace period 803 days

Files in OpenStack Swift 76, 645

Storage consumption 1.96TB

TABLE I
DATASET SUMMARY.

C. Dataset

The NEC dataset integrates two sources of information:

storage layer and sharing interactions. The information to

build our dataset was collected directly by the provider from

the back-end (SQL Server). A summary of both types of

information sources can be found in Table I.
Regarding storage, the trace is a snapshot of the data store

contents (OpenStack Swift). To wit, the trace contains log lines

that identify and describe files (size, extension), as well as

the file owner and the container/folder where it is stored. This

enables us to analyze the storage layer of this service in detail.
The sharing trace contains log lines describing sharing

interactions across users and information about shared files.

This trace contains all sharing interactions in the NEC Personal

Cloud (Madrid datacenter) from March 7th 2013 to September

9th 2015. To our knowledge, this is the most extensive trace

of data sharing in Personal Clouds to date.
Dataset limitations: The collected dataset has some limi-

tations. For instance, we did not trace information about the

locations of users (e.g., IP addresses) due to privacy reasons.

Moreover, it should be noted that while the sharing trace

captures the whole sharing activity of users for several months,

the storage layer information corresponds to a snapshot at a

specific point in time. Consequently, not all the files captured

in the sharing trace exist in the storage trace, and vice-versa.

The sharing trace also lacks from temporal information.

IV. BEHIND SHARING: STORAGE LAYER ANALYSIS

Next, we analyze the files stored and shared in NEC.

From a provider’s viewpoint, we believe that such analysis

is essential to understand the implications of sharing in terms

of data management. For the sake of clarity, we compare NEC

with UbuntuOne (U1), the Personal Cloud of Canonical [2].

This will help us to highlight usage differences between both

services, giving generality to our results (see Fig. 3).

A. Snapshot of Storage Layer

In Fig. 3a, we compare the sizes of files in NEC and U1. As

we can observe, NEC files are in general significantly larger

than files found in U1. To inform this argument, whereas the

90% of U1 files are smaller than 1MB, in NEC this value

is 80.15MB. In terms of data sharing, this observation has

a relevant implication: sharing and synchronizing large files

across multiple clients consumes more server resources than

for small files (e.g., upload bandwidth).
Fig. 3a also shows the size of files stored in NEC that

have been object of sharing, which represent 26% out of

the total file ids in the trace; clearly, NEC users exhibit a

tendency to share larger files. Thus, given the same rate of

sharing activity, NEC would have to deliver a higher amount

of upload bandwidth compared to U1. Despite this may have

economic repercussions for the provider [8], the fact that
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Fig. 3. Analysis of shared and stored files in the NEC Personal Cloud.

users share larger files opens the door to effectively exploiting

content distribution techniques in desktop clients to minimize

bandwidth consumption [18].

To explain why files in NEC are larger than in U1, we

aim at inspecting the dominant types of files that exist in

both services. Thus, we classified files related to the 80 most

popular file extensions according to six categories: pictures

(Pics), code files (Code), documents (Docs), audio/video files

(Media), compressed files (Zip) and binary/executable files

(Binary). Fig. 3b shows the relative popularity and storage

spaced consumed by these categories in NEC and U1.

Appreciably, in Fig. 3b the dominant file types in NEC

and U1 differ considerably. In NEC, the most frequent files

are documents, whereas in U1 the most common file types

are code files. Moreover, conversely to U1, one of the most

common file categories in NEC is Zip. This evidences that

users manage different data types depending on the usage they

exhibit in Personal Cloud service at hand.

Considering the storage space of file categories, in NEC

compressed, binary and media files dominate 85% of the total

storage consumption. If we consider that most of these files

are hardly compressible [19], this yields that applying data

compression to minimize outgoing bandwidth in data sharing

may be ineffective. Similarly, in U1 Media and Pics categories

account for the largest fraction of storage space, which also

represent files with hardly compressible contents.

The reason why storage space is more dominated by non-

compressible files is due to their size. In Fig. 3c we observe

that Zip, Binary and Media files are much larger than code files

or documents. In terms of sharing, 48.78% of the files shared

in NEC correspond to documents. This is not surprising given

that the NEC Personal Cloud was mainly used in corporate

environments. Fig 3c also shows that Zip files not only account

for a large fraction of storage space, but also for a significant

amount of sharing activity (23.32% of total shared files).

Insight 1: The nature of contents (file types, sizes) differs

across Personal Clouds, depending on the habits of users. This

impacts on the resources required to provide data sharing.

Insight 2: Larger and incompressible files account for a

majority of the storage space in NEC compared to UbuntuOne.

B. User Storage and Sharing Activity

Next, we analyze the consumption of resources across users.

We identify how users behave, both in terms of storage and

sharing activity. To this end, in Fig. 4, we differentiate the
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Fig. 4. Number of stored and shared files per user.

sharing activity of a user vi to another user vj based on: i) if

user vi shares files with user vj (vi → vj , “sharing out” link

where vi is a “producer”), ii) in the opposite case (vj → vi,
“sharing in” link where vi is a “consumer”), and when vi
shares files with himself (vi → vi, sharing self ) —for example

via a sharing hyperlink. We also show the files stored per user.
In Fig. 4, we observe that most NEC users are consumers

of shared data. That is, only 3.7% of NEC users have not

requested any shared file —whereas 50% of users requested

8 or more files. Conversely, the amount users that produce

shared content is more limited; for instance, only 1% of users

shared 8 or more files with others. The self-sharing activity is

even less important than the production of shared contents.
We also infer from Fig. 4 that storage is an important aspect

of the activity of users —e.g., 90% of users stored some

content in NEC. Moreover, similarly to what happens with

sharing activity, the storage consumption of users is skewed;

i.e., 10% of most active users account for 38.55% of storage

consumption. Activity skewness has been also observed in

UbuntuOne [2], which seems to be an orthogonal phenomenon

of these systems. This opens the door to apply specific storage

optimizations —or even limitations— on very active users.
Perhaps surprisingly, we have not found correlations among

the storage and sharing activity of users. That is, the Pear-

son correlation coefficient comparing the number of shared

(self/in/out) and the number of stored files per users falls

below ±0.3, indicating no correlation. We also looked for

correlations among the different types of sharing obtaining

similar results. This means that the behavior of NEC users

is specialized or stereotyped; users may be intensive at either

storing files or at some form of sharing (consumers, produc-

ers), but normally users do not exhibit the same intensity in

more than one type of activity.

Insight 3: Most NEC users tend to store and consume shared

data; producers of shared content are a minority.

Insight 4: The activity of NEC users is skewed and stereotyped.



(a) Largest and (some) smaller connected
components in the NEC data sharing network.

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node degree

A
v

g
. 

lo
ca

l 
cl

u
st

er
in

g
 c

o
ef

fi
ci

en
t

 

 

Largest component

Small components

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nodes in connected component

N
et

w
o

rk
 c

lu
st

er
in

g
 c

o
ef

fi
ci

en
t

 

 

Largest connected
component

(b) Network clustering coefficient vs component size
(left) and avg. local clustering vs node degree (right).

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

Node in−degree

C
C

D
F

 

 

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

Node out−degree

C
C

D
F

 

 
Large component

Small components

P(k) = k
−α

 (α=1.44)

Large component

Small components

P(k) = k
−α

 (α=2.08)

(c) Complementary CDF of node degrees in the
largest/smaller components.

Fig. 5. Topology characteristics of the NEC data sharing network.
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C. Inspecting Shared Files and Folders

In what follows, we aim at inspecting the number of

collaborators (producers, consumers) that interact with shared

files and folders (see Fig. 6).

On the one hand, Fig. 6 shows that most shared folders ex-

hibit a similar number of producers and consumers. However,

the tail of the distributions is where the actual differences arise;

whereas the percentile 99.9% of shared content producers per

folder is 11, in the case of shared content consumers this

number is 138. Thus, there is a small number of shared folders

that represents a hot spot of sharing and storage activity.

Considering the locking mechanisms of WebDav for shared

resources [17], NEC shared folders with many concurrent

users may incur in performance degradation.

Files are almost always shared by a single producer and to

multiple consumers. Similarly to the case of folders, the long

tail of the file consumers distribution points out that a small

fraction of files is shared with a high number of users. Such a

skewed file popularity is common in other storage domains and

it can exploited via caching techniques; accordingly, Personal

Cloud desktop clients may integrate socially-informed caching

techniques —specially within LAN corporate environments—

to reduce transfers with the datacenter [20].

Moreover, we have not found correlations between the

number of shared content producers per folder and the amount

of files or the storage space of the folder. However, if we relate

the number of consumers of a shared folder and its storage

space we obtain a weak correlation —Pearson correlation

coefficient is 0.67. This yields that, in some cases, the storage

space of a shared folder is related to the number of consumer

users.

Insight 5: Shared files and folders exhibit a skewed distribu-

tion of consumer users.

V. DATA SHARING SOCIAL NETWORK

Next, we analyze the structural characteristics of the NEC

Personal Cloud data sharing network (see Fig. 5). Such analy-

sis will help us to understand how users share data across them,

which is in turn a valuable source of information to develop

advanced data management techniques for these systems.

A. Network Analysis & Characterization

NEC users are not connected to a single network, but rather

distributed across many connected components that coexist

within the same Personal Cloud. That is, the 8, 393 users

that shared data in our trace are organized into 1, 053 distinct

isolated connected components —corresponding to different

companies and organizations. As can be observed in Fig. 5a,

not all the connected components are equal in size; there

is a large component consisting of 778 users, whereas the

remaining ones are formed by 33 or less users.

In this sense, it is interesting to know if the largest connected

component shares similar network properties with the rest of

smaller ones. If we focus on network clustering, the answer

to this question is negative; the left scatter plot of Fig. 5b

shows that the network clustering coefficient of small con-

nected components is generally much higher than the largest

component. This indicates that groups of users belonging to

small organizations or reduced work groups tend to be more

interconnected and collaborative than large ones.

Similarly, the right scatter plot of Fig. 5b relates the

network degree of users and their average local clustering

coefficient. In Fig. 5b we clearly observe that users belonging

to small connected components exhibit very high clustering

coefficients, in particular for degrees ≤ 10. Apart of being less

interconnected, Fig. 5b shows that the clustering coefficient in

the largest component decreases as the node degree increases.

This phenomenon is typical of scale free networks [21].

To check if the largest connected component is a scale free

network, we need to inspect if its node degree distribution

P (k) follows a power law (P (k) = k−α) with 2 ≤ α ≤
3 [21]. In practice, this yields that most users are connected

with few other users, whereas a handful of them present high

connectivity (i.e., hubs). As can be observed in Fig. 5c, the

largest component node in-degree exhibits a linear down trend

in the in log-log plot, which can be approximated by a power

law distribution with α = 2.08. However, for the out-degree

distribution does not fit a power law with 2 ≤ α ≤ 3. Thus,
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despite that the largest component of the NEC sharing network

is not purely a scale free network, we can confirm that it

presents scale free characteristics.

Insight 6: The NEC sharing network is formed by many

isolated components that represent different organizations and

work groups. Some of them present totally different topologies.

Insight 7: There are sharing communities that present scale-

free characteristics (e.g., power-law in-degree distribution).

B. Identifying Content Producers and Consumers

Next, we aim at understanding the sources of shared content

and how this content is disseminated within the NEC data

sharing network. This can allow us to predict and anticipate

data sharing flows within the system.

First, we want to analyze the strength of data sharing

links across users. In particular, we measure link strength as

the number of files that two users (or a user with himself)

exchanged. To this end, Fig. 7a shows the strength of user

sharing links depending on their type. As can be observed in

Fig. 7a, whereas ≈ 99.8% of sharing links consist of ≤ 10 files

(i.e., weak links), a small fraction of them can be significantly

stronger —up to 64 and 51 files for in/out and self links,

respectively. These strong links may be object of optimization

within the datacenter; for example, by co-locating users that

share many files across them within the same servers [22].

As highly intense links cause a large fraction of the data

sharing activity, an interesting question in this regard may be:

do highly connected nodes exhibit strong links? Perhaps sur-

prisingly, Fig. 7b illustrates that there is no correlation between

the connectivity of users and the strength of their sharing links.

Similarly, we have not found correlations between the degree

of users and the number of stored files, as the resulting Pearson

correlation coefficient is 0.1.

We also want to specifically inspect the activity of hubs

in order to infer whether they are producers or consumers

of shared content. In this sense, the top 0.1% of hubs are

in general producers of shared content; in average, these

users shared 46.3 files with others, whereas they requested

25.4 shared files. However, this behavior is rapidly diluted

as we consider a larger number nodes; for the top 1% of

highly connected nodes, the average number of produced and

consumed shared files is 11.61 and 17.27, respectively.

Insight 8: The strength of sharing links is skewed and hub

users do not tend to present highly strong sharing links.

Insight 9: In NEC, main hubs are generally producers of

shared content.

C. Communities of Shared Content

Next, we analyze the size and clustering of groups of users

sharing or interested in a given file. For the sake of clarity, in

Fig. 7c we differentiated the content communities belonging

to the large connected component from the rest of small

components of the NEC sharing network.
Fig. 7c illustrates that the clustering of communities related

to the same content presents a more extreme behavior than

the clustering of connected components (see Fig. 5b). For the

largest connected component, 94% of sharing groups related to

the same file present a degree of clustering of 0. This means

that most sharing interactions are done across small groups

that have no common interest —master-slave sharing related to

network hubs. Only a handful of shared content communities

in the largest component present links related to other contents,

which is denoted by a higher network clustering. Such a

result suggests that this component may belong to a big and

hierarchical organization with independent departments.
In the case of the smaller network components the situation

differs; a majority of users sharing a file present very high

clustering, yielding that they have other common sharing links

(i.e., files). Also, many common interests of these user com-

munities tend to be related to editable files (e.g., documents).

This suggests that peer-to-peer synchronization techniques can

be deployed in these small and clustered groups to offload the

datacenter from data management relate to file syncing. This

is specially true given that users in many small organizations

coexists within high speed networks (e.g., LAN).
All in all, the fact of finding moderate/large groups of users

(e.g., > 5) sharing the same file suggests that NEC might

effectively exploit client-based content distribution [18], [20].

Insight 10: The degree of clustering and the size of file-based

communities greatly varies across network components.

VI. MULTI-LAYER ANALYSIS OF LINK TYPES

Next, we resort to basic multi-layer network analysis to

understand the data sharing network of NEC depending on

different types of sharing links. This analysis will shed light on

how to exploit data sharing interactions of users based on the

content shared. Concretely, we define a multi-layer network

in which each layer is formed by sharing links of a given

file type (e.g., Docs, Media). Our focus is to look for similar

topological characteristics across these layers (see Fig. 8).
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Fig. 8. Pairwise network overlaps indicating the similarity or dependence
between interactions.

A. Link Overlap Between Layers

First, we focus on the link overlap across content-based

layers. That is, we want to quantify the number of common

sharing links across users that exist for more than one type of

content. To this end, Fig. 8a shows the Jaccard coefficient of

link overlap per pairs of network layers.

The most interesting point of Fig. 8a is the Docs category.

Naturally, as documents are the most popular type of files in

NEC, it tends to exhibit the higher amount of intersections

with other file types, inducing a higher Jaccard coefficient.

However, such a relationship is not lineal. To wit, the Jaccard

value of the Docs-Zip tuple is significantly higher than the rest

of tuples. This has a clear implication: NEC users that share

documents also tend to share compressed files. We can also

appreciate a similar correlation of with the Binary-Docs tuple.

On the other hand, we can deduce that most sharing links are

generally not shared between tuples of content-based layers,

as many Jaccard values fall below 0.05. This occurs even

considering popular file types with a potentially number of

links (e.g., Pics). One of the reasons for this phenomenon

may be the weak link strength; that is, most sharing links are

related with very few files (see Fig. 7a). Also, if we consider

that 63.3% of links are related to a single type of content (see

inner plot in Fig. 8a), this explains the low rate of common

sharing links across layers. Thus, sharing links across users

tend to be weak and specialized in terms of contents.

Insight 11: There are types of contents that NEC users tend

to simultaneously share with other users (e.g., Docs and Zip).

Insight 12: Most sharing links are weak and content-specific.

B. Degree Correlation Between Layers

In Fig. 8b we inspect the Pearson correlation coefficient

of node degree across multiple content-based network layers.

The idea is to find whether nodes exhibit a similar number of

sharing links depending on the type of shared files.

Appreciably, Fig. 8b shows that the degree of nodes is

not correlated across network layers. That is, most correlation

values fall below 0.3 that indicates no correlation at all. This

seems a natural consequence of the specialization of link types;

if most sharing links belong to a single type of content, the

degree of nodes would be mostly concentrated on particular

content-based layers. Therefore, the sharing interactions of

users are also closely related to specific types of files.

As in the case of link overlap, the highest degree correlation

values belong to the Docs-Zip tuple, followed by the Binary-

Docs tuple. Moreover, we find that the in-degree of nodes

exhibits higher correlation that the out-degree. The reason is

that most users are content consumers, being much easier to

find in links across network layers that in the case of out links.

Insight 13: NEC users tend to share specific types of content.

VII. DISCUSSION AND LESSONS LEARNED

In this section, we discuss potential applications and benefits

that our study may have on the NEC Personal Cloud, which

may be of independent interest for other similar systems. Con-

cretely, our objective is to propose optimized data management

techniques (client and server sides) that exploit the social

information of user data sharing interactions:

Clients can help to distribute content: The traditional Per-

sonal Cloud design presents a purely centralized architecture

in which desktop clients communicate with the server for

transferring files. However, the bandwidth costs for providers

of such a centralized model is non-negligible [8], [23]. To

reduce bandwidth costs, researchers may explore client-side

strategies such as cooperative caching [24] and peer-to-peer

content distribution [18] for Personal Clouds. In our view, the

fat-client architecture of Personal Cloud desktop clients favors

the deployment of this kind of strategies.

To inform this argument, we discovered that a small fraction

of shared files and folders present a large amount of consumer

nodes and normally very few contributors (Insight 5). Further,

we found that shared files are large (Insight 2) and that highly

connected hubs tend to produce shared content (Insight 9).

These factors suggest that techniques like cooperative caching

and peer-to-peer content distribution across consumers of

shared data could greatly reduce bandwidth costs in Personal

Clouds. Despite cooperative caching has been introduced

in Web applications and Online Social Networks [20], the

literature lacks from an exploration of these techniques in

the Personal Cloud arena. Similarly, the incipient efforts on

peer-to-peer content distribution for Personal Clouds can now

benefit from exploiting social topologies of real users [18].

Towards distributed file syncing: File synchronization repre-

sents a large fraction of a Personal Cloud back-end activity [1],

[2]. In most services, the communication overhead between

clients and the server becomes specially heavy under frequent

updates or when clients synchronize entire folders containing

multiple small files [6]. Thus, we believe that such activity

may also be optimized via peer-to-peer techniques.

In this sense, we found that documents —susceptible to fre-

quent updates— represent a large fraction of the total number

of files managed and shared in NEC (Insight 1). Moreover,

many user communities are very clustered (Insight 6) —even

in a file basis (Insight 10)— and they potentially coexist

within high speed networks (e.g., LAN). These conditions are

suitable to apply advanced peer-to-peer syncing algorithms in

desktop clients. Today, only Dropbox integrates simple LAN-

based syncing across a user’s desktop clients7. However, more

research is needed to bring this kind of synchronization to

the next level; to wit, early attempts resorted to Bittorrent

Sync8 for synchronizing files in Personal Clouds [25]. In the

7https://www.dropbox.com/en/help/137
8http://www.getsync.com/



future, such kind of approaches might benefit from social and

behavioral information of users to intelligently apply the most

suitable syncing mechanism for a given file or folder.

Topology-aware data placement: In the context of Online

Social Networks, remarkable research efforts advocated for

merging the social structure of users with the layout or

placement of data objects in the back-end [22]. In particular,

SPAR [22] is a middleware that transparently partitions and

replicates data objects based on the social graph structure of

users to achieve data locality while minimizing replication.

In this sense, in our study we have shown that the social

organization of NEC users is complex, leading to disparate

data sharing topologies that may be handled differently. That

is, there are groups of users organized in small and very

interconnected networks, whereas other users form networks

that present scale-free characteristics (Insights 6 and 7).

Moreover, we realized that data sharing links across users

may be very disparate in terms of intensity (Insight 8) and

types of contents shared (Insight 12). We believe that the

available social information of sharing interactions makes

Personal Clouds a suitable target to apply topology-aware

data placement strategies [22]. This may help to optimize the

storage back-end and to reduce the storage costs of providers.

VIII. CONCLUSIONS

Data sharing accounts for an important fraction of the data

management activity in a Personal Cloud. Motivated by the

lack of studies, in this paper we contribute the first analysis

of data sharing in a private Personal Cloud. In particular, we

analyze sharing information of users gathered at the metadata

back-end of NEC, an enterprise-oriented Personal Cloud.

First, we contributed a comprehensive study of the storage

layer and data sharing network of NEC users. Our analysis

provides novel insights regarding the storage characteristics

of files in NEC compared with UbuntuOne, the activity of

users, the concurrent usage of files and folders, as well as the

different topologies that groups of users form based on their

sharing interactions. Even more, we explored the similarities

of sharing links of users based on the types of contents shared.

Thanks to our study of NEC, we proposed several data

management optimizations that can be applied to similar

systems by exploiting the storage and sharing interactions of

users (e.g., cooperative caching, peer-to-peer syncing, etc.).

We conclude that this study and the released dataset may

help on paving the way for a better characterization of data

sharing in Personal Clouds. This, in turn, may provide a

solid ground for researchers to devise novel data management

techniques to further optimize these systems.
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