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Abstract—Software-defined storage (SDS) aims to minimize the
complexity of data management in the Cloud. SDS decouples the
control plane from the data plane and simplifies the management
of the storage system via automated storage policy enforcement.

In this paper, we propose a novel SDS framework for Object
Storage that allows to decentralize policy enforcement through
the deployment of per-object management policies in the storage
nodes. As in active storage systems, we leverage the underutilized
CPU time in the storage nodes. But our framework goes one step
further. It provides a new management abstraction called micro-
controllers which operate on objects depending on their state and
content, thereby permitting the implementation of sophisticated
management policies, such as the automated deletion of an object
based on its access history, and even allowing the orchestration of
active storage tasks.

Our SDS system avoids the massive interception of data flows
by moving that logic to the appropriate objects. Furthermore, our
extensible model simplifies the customization of Object Storage
services. We present in the validation several interesting use cases
such as automated deletion, content level access control, and Web
prefetching.

Index Terms—Object Storage; Software-defined Storage;
OpenStack Swift; Active Storage

I. INTRODUCTION

Object Storage systems like Amazon S3 or OpenStack Swift
have gained enormous popularity in Cloud settings thanks to
their scalable architecture and their flexibility to deal with
unstructured data. An object usually includes the data itself,
metadata, and a globally unique identifier. Object Storage
provides two major advantages over other storage architectures
like file or block storage systems. On the one hand, scalability
and elasticity are ensured thanks to a flat namespace that
can span multiple nodes. On the other hand, Object Storage
offers more flexibility by providing interfaces (APIs) and
custom metadata that can be directly accessed by third party
applications.

Previous approaches like active storage [1]–[3] have tried to
increase the flexibility and programmability of Object Storage.
In this line, active storage allows computation close to the
data, leveraging storage nodes resources. For instance, the IBM
Storlet Engine [4] for OpenStack Swift enables the execution
of active tasks like compression when an object is accessed in
the Object Store. But active storage tasks are usually stateless
tasks that must be instrumented in a per-object basis. Thus,
they cannot make management decisions based on the state of
an object such as its access history or on the content itself.

To increase the automation, flexibility, and programmability
of Object Storage we propose here Vertigo, a novel Software-
defined Storage (SDS) architecture that leverages previous
work on active storage. As in Software-defined Networking
(SDN), our framework also separates the control plane from

the data plane to simplify policy enforcement and management
of data storage services.

Our major difference is that the control plane and the data
planes are co-located in the same storage nodes. In our case,
the control plane is a meta layer that intercepts and modifies
the behavior of the data plane.

The novelty of our approach is the decentralization of policy
enforcement thanks to the deployment of management policies
(micro-controllers) to the storage nodes. As in active storage
systems, we leverage the computing resources of storage nodes
to deploy micro-controllers that intercept the object life cycle.
The distinguishing feature of micro-controllers is that they can
react to the changes made on the state of an object, permitting
the implementation of sophisticated management policies, like
the automated deletion of an object based on its access history.
In addition, micro-controllers can be used to orchestrate active
storage tasks, which is not possible to do in frameworks like
the IBM Storlet Engine [4], and even to manipulate objects in
the data plane based on their content.

Object stores operate at the object level, mainly acting as
simple repositories of data. One of the outstanding features
of Vertigo is that we can work at the content level, which is
essential to allow an object to adapt its behavior depending on
who is accessing it, its state and the nature of its content. The
result is an unprecedented amount of flexibility for automation
and storage programmability.

Furthermore, our framework avoids massive interception of
data flows in SDS by moving that logic to the appropriate
objects. In the validation, we present interesting applications
such as automated deletion and control level access control.

The remainder of this paper is organized as follows. In
section II, we summarize the related work of SDS solutions
and discuss their advantages and shortcomings. In section III,
we describe the architecture of Vertigo. In section IV, we
show the implementation of Vertigo on a real system based on
OpenStack Swift. In section V, we present some applications
that Vertigo supports. Finally, in section VI we evaluate these
applications.

II. RELATED WORK

The flexibility and programmability of Object Storage fits
nicely with software-defined storage solutions that automate
provisioning and management of the storage service. In this
work, however, we focus on those SDS solutions related to the
life cicle, and the management of the objects. This is the case
of the EMC Atmos [5], in which we can apply user-defined
policies to groups of objects to determine, for instance, object
layout, replication levels, and replica placement.
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In Amazon S31, on the other hand, we can define life cycle
configuration rules that intercept calls to objects in the system.
Such configuration rules may simplify the life cycle manage-
ment of objects. One example is automated transition of less-
frequently accessed objects to low-cost storage alternatives,
which changes replication level and replica placement of the
objects.

Furthermore, Amazon has another service called Amazon
lambda2. In Lambda, Amazon users can upload their own
programs, called lambda functions, which will be triggered
when certain events occur in some of their services. For
instance, in Amazon Simple Storage Service, a user can
trigger lambda functions when an object is uploaded or deleted
from a container. With this service, the users can develop
a wide variety of different lambda functions, for example,
functions for live data processing, which generate metrics or
filter registers, and functions for extraction, transformation and
load (ETL) capabilities, as well as for other purposes like
video transcoding, file indexing and content validation. This
approach extends the functionality of the storage service, and
the actual computation is done in a separate cluster. Amazon
manages and scales out the resources as needed for each
lambda function. Unlike Amazon Lambda, we advocate to
leverage storage node resources to run computation tasks close
to the data thanks to Active Storage techniques.

Another related system is Comet [6]. Comet is a distributed
key-value storage system which stores active storage objects
(ASOs). An ASO consists of a key, a value, and a set of
handlers which are triggered as a result of timers or storage
operations, such as put or get. The main difference with Comet
is that in our approach we differentiate between control and
active storage tasks. In our approach, a micro-controller may
call active storage tasks over the data or not. For example,
compressing an object to some users. In this case, the micro-
controller will call the active storage program to compress
the file when a specific user accesses the object, and will do
nothing when other users access the object.

IOFlow [7] is a SDS architecture designed for a distributed
file system. It uses a logical centralized control plane to en-
able high-level control policies like bandwidth differentiation,
caching and data sanitization. Even if we share control plane
and data plane abstractions, the programmability, granular-
ity, and flexibility of our approach is completely different.
Whereas IOFlow intercepts data flows, our framework works
at the object level.

In an earlier work [1], method objects and policy objects
were introduced to extend the functionality of the object
storage devices. A method object is a special object that can
be executed in object storage devices to perform operations
on certain user objects. Policy objects, moreover, are the set
of conditions that can be evaluated to decide whether or not
execute a method object. In this work, they introduce an hybrid
approach using both request-driven model (explicit method
invocation in request) and policy-driven model (method ex-
ecution when the conditions defined by policies are satisfied)
to put method objects into execution. This model is limited
to only one method object associated to a policy object, and
the policy is only one condition that may be satisfied or
not. In contrast, one functionality of Vertigo is that micro-

1http://docs.aws.amazon.com/AmazonS3/latest/dev/
2http://docs.aws.amazon.com/lambda/latest/dg/

controller objects may be policy objects, but with more than
one condition which, therefore, can put into execution different
method objects depending on which condition is satisfied. In
our case, we can even put into execution more than one method
object with a pipeline of methods.

In the context of file systems, the storage policy decisions
are made for an entire file system. This granularity is too
large and can sacrifice storage efficiency and performance,
particularly since different files have different requirements.
That is why in [8]–[10], they have created a framework that
allows policy decisions to be made at the file granularity in
different types of file systems. They have created a storage
stack through which they pass all files before storing them
in the disk. This stack is extensible by adding plugins, and
a system administrator can set a flow of plugins along the
storage stack. This plugins are enabled and disabled through
the use of object attributes, which can be set by the user or
by means of policies.

III. ARCHITECTURE

Like other SDS systems [7], [11]–[13] our architecture
includes a control plane and a data plane. Our major difference
is that the control plane and the data planes are co-located in
the same storage nodes. In our specific case, the control plane
is a meta layer that intercepts and modifies the behavior of the
data plane.

The entire architectural model revolves around the concept
of micro-controller, and therefore, it is critical to define what a
micro-controller is. As a working definition, a micro-controller
is a data behavior or management policy that is associated in
the deployment phase to one or more object(s) and to one or
more storage operation(s) (get, put, delete and update).
Compared with conventional active storage, micro-controllers
go beyond simple active storage tasks for two main reasons:

1) Unlike active storage tasks, micro-controllers can persist
their (object) state and use it afterward; and

2) Active storage tasks usually modify the current input or
output data flow of one object, but micro-controllers can
modify one or more objects and even instrument one or
more active storage tasks.

The complete architecture is depicted in Fig. 1. As expected,
the data plane includes the traditional Object Storage system
which manages objects and their associated metadata. The
control plane includes two major components: the Controller
Runtime and the Internal Client. The Controller Runtime is the
entity that intercepts all requests of the object life cycle and
runs interceptors (micro-controllers and active storage tasks)
in a safe and sandboxed environment. The Internal Client
component enables the communication of micro-controllers
with the objects in the data plane. The Internal Client also
allows execution of interceptors at specific times without the
need for external client requests.

To better understand the role of these components, consider
a micro-controller that counts the number of read requests
to one object in the past x days. To deploy it, the code of
this micro-controller must be first installed in the Controller
Runtime, and then tell the Controller Runtime that an onGet
trigger is associated with this registered micro-controller for
the targeted object (KEY=value) or objects. From that mo-
ment, every get request to this object will be intercepted and
routed to this micro-controller.
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Fig. 1. High level architecture overview

A more advanced example could be a micro-controller that
performs actions on the data plane when some condition is
met. For example, the previous micro-controller could delete
the object if there are no requests in the past 10 days. In this
case, the micro-controller would then instrument the Internal
Client component to perform such delete action on the data
plane.

A. Controller Runtime

The Controller Runtime contains two major components for
managing the different types of interceptors: the Controller
Engine and the Active Storage Engine. Both components work
on an isolated and sandboxed environment (Linux container)
that intercepts calls to the object storage.

Active Storage Engine. It takes care of the management of
active storage tasks. These tasks are stateless components that
process the input and output data flows from and to an object.
Typical active storage tasks like compression are used as data
reduction techniques in Object stores. It is also responsible for
the installation, deployment and configuration of active storage
tasks in the control plane:

• Installation means uploading and installing the task code
in the framework.

• Deployment refers to linking an installed task to one or
more objects with one or more triggers. Triggers include
the operations that may be intercepted in the selected
object or objects (get, put, delete, update).

• Configuration refers to setting up the parameters and the
necessary metadata of an already installed task, e.g., the
compression ratio.

In Vertigo, active storage tasks are normally instrumented
and executed from micro-controllers located in the Controller
Engine.

Controller Engine. It takes care of the management of micro-
controllers. It is responsible of the installation, deployment and
configuration of micro-controllers in the control plane. These
three tasks are equivalent to the ones explained above.

As explained before, once deployed, micro-controllers are
triggered in reaction to life cycle events of objects in the data
plane. Micro-controllers can store information in a persistent
way (e.g., an access counter, the timestamp of the last access,
the role of a user, etc.) by transparently benefiting from object
metadata.
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Fig. 2. Micro-controller-Object metadata

A micro-controller can take one or all of the following
actions after intercepting a life cycle request on an object:

• It can update metadata (e.g., an access counter);
• It can execute one or orchestrate multiple active storage

tasks (e.g., compression, encryption, etc.); and
• It can generate new requests to the object storage (e.g.,

to delete some object).

Fig. 2 illustrates the deployment of a micro-controller that
deletes an object after x days. The idea is to develop a generic
delete micro-controller and associate it with different objects.
What changes is the metadata associated with the target object
and the delete micro-controller: {“delete_after”:16} for
Object1, and {“delete_after”:10} for Object2. Thanks to
this declarative approach, it is then possible to reuse the same
micro-controller for different objects.

A more sophisticated example may be a micro-controller for
instrumenting an active storage task. For example, we could
enforce the compression of an object if it is not very popular
(few accesses in the last days) and the content type is text.

B. Object Storage Internal Client
The Internal Client offers two main functionalities to the

Controller Runtime:

• Scheduling periodic execution of micro-controllers: Using
a daemon service like cron, it is possible to create a new
onTimer trigger and schedule the execution of specific
micro-controllers. In this case, the micro-controller is not
tied to the life cycle of the object, so that batch or periodic
tasks can be orchestrated very easily.

• Execution of object requests: A simple API enables the
micro-controllers to communicate with the object storage
and execute get, put, post and delete requests on
specific objects.

IV. IMPLEMENTATION

We have implemented a prototype of our SDS framework3

on top of the OpenStack Swift4 system and modified the open
source IBM Storlet framework5 to suit our requirements.

OpenStack Swift is a highly scalable Object Storage system
that can store a large amount of data through a RESTful HTTP
API similar to that of Amazon S3. The access path to an object
consists of exactly three elements: /account/container/object.
The object is the exact data input by the user, while accounts
and containers provide a way of grouping objects. Nesting of
accounts and containers is not supported. Swift architecture is
split into several components, which include account servers,

3https://github.com/iostackproject/swift-vertigo
4http://docs.openstack.org/developer/swift/
5https://github.com/openstack/storlets
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Fig. 3. High level architecture overview on OpenStack Swift

container servers, and object servers, the latter responsible for
handling storage, replication, and management of objects. In
addition to that, proxy servers expose the Swift API to users
and stream objects to and from the client upon request.

As shown in Fig. 3, we have implemented our interception
framework modifying both OpenStack Swift proxy and object
servers.

On the other hand, Storlets extend Swift with the capability
to run computations close to the data in a secure and isolated
manner making use of Docker6 as application container. With
Storlets a developer can write code, package and deploy it as
a Swift object, and then explicitly invoke it on data objects as
if the code was part of the Swift pipeline.

Although Storlets have been the basis to implement active
storage in Vertigo, we were forced to extend their functionality
importantly, as they do not support pipelining, implicit calls,
metadata management, and orchestration, among other issues.
For instance, a simple composite function like this:

( compose ( f1 f2 )
( lambda ( x ) ( f1 ( f2 x ) ) ) )

( d e f i n e grep−unzip ( compose g r e p u n z i p ) )

cannot be implemented with the current Storelets framework.
However, it can be easily achieved with Vertigo and its original
micro-controller abstraction. This allows active storage to be
abstracted into smaller units that can be treated as disposable
pieces, which could be priced as a utility, among other benefits.

A. Micro-Controller Runtime Sytem
The Runtime System is the principal component of Vertigo.

Taking Swift as basis, it is composed by three elements: the
Controller Engine, the Interception Middleware, and the Active
Storage Engine.

Swift Controller Engine. It is a daemon process providing
isolation and safety thanks to an isolated environment using
Linux containers (Docker). As a result, the micro-controllers
are sandboxed: They have no direct network access, no system
execution capabilities, no thread creation capabilities, and no
access to the filesystem. The Controller Engine is shared by all
the users of the same tenant, but for each container there exists
one different instance. When this daemon receives the micro-
controller list and all metadata, it runs all micro-controllers in
the appropriate order.

6https://docs.docker.com/

Interception Middleware. We built a new Swift interception
middleware with two major tasks: To deploy micro-controllers
to a particular object(s) and to load micro-controllers to the
Controller Engine.

Upon the deployment of a micro-controller, a trigger header
of the type: onGet, onPut, onUpdate, onDelete and
onTimer, must be appointed to tell the framework which
life cycle events must be intercepted. For storing the micro-
controller execution list, the framework uses Linux extended
object attributes. Like Swift, which uses user.swift.metadata
key for storing object metadata, Vertigo uses a personalized
key (user.swift.microcontroller) for storing the trigger list.

As described in the previous section, a micro-controller may
have specific metadata associated with the managed object.
This metadata is stored along with the object in a separate file
named micro-controller-name.md. For making this association,
a user must issue a put request to the object that they want
to assign the micro-controller, with the correspondent header,
and then upload the metadata file associated to the micro-
controller.

To better understand this, consider a user wants to associate
a simple access counter micro-controller to a given object. The
steps will be: First, a Swift put request with the header “X-
MicroController-onGet:counter-1.0.jar” to associate the micro-
controller counter-1.0.jar with an onGet trigger, followed by
an upload of the counter.md metadata file to the storage server.
The middleware is responsible for storing counter.md without
modifying the contents of the target object.

Micro-controllers can be undeployed with the special header
“X-MicroController-Delete” added in a post request. This
delete operation removes the micro-controller from the trigger
list and its related metadata file. Moreover, it is possible to re-
trieve the trigger list by adding the header “X-MicroController-
list” into a get request over the object.

When a request arrives to an object, the middleware checks
if the object has micro-controllers in the trigger related to the
request. If there are micro-controllers assigned, the middleware
automatically starts the Controller Engine and sends it the list
of micro-controllers to execute, as well as the object metadata,
the request metadata and the micro-controllers metadata.

One of the main characteristics of our SDS system is that
micro-controllers can only be blocked during the execution a
Storlet. If there is no Storlet (no active storage task to run), the
micro-controller returns the control to the middleware, and the
rest of micro-controller code runs asynchronously. If a micro-
controller needs to put into execution one or more Storlets,
the middleware remains waiting until it receives the processed
data from the Storlet(s), and then sends it to the client.

Swift Active Storage Engine. This the third component of the
Runtime System and is the responsible of processing the data.
We leveraged the IBM Storlets framework to implement this
component. Since the current Storlets framework only supports
one Storlet per request, we modified it to enable the pipelining
of Storlets in the same request. The Storlets can also be run in
parallel; it is not necessary to finish one to run another, which
allows for orchestration of active storage tasks, which was not
possible with the original IBM Storlet framework.

B. Swift Object Storage Internal Client
The last architectural component of our framework is the

Object Storage Internal Client. It converts requests from micro-
controllers or from cron events to object storage requests. It
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can perform any Swift request such as put, get, post or
delete. There are no restrictions at this level to make any
request to Swift objects. But of course, all users are restricted
to perform requests only to their owned objects and containers
in Swift.

To configure an onTimer trigger, we adopted the following
convention. When specifying the header “X-MicroController-
onTimer” with the micro-controller name, the user must pro-
vide the date to execute the micro-controller, e.g 02/06, or the
date and the repetition frequency to execute it during a period
of time, e.g., since 10/12, once a week.

The Swift middleware stores all these data under the key
user.swift.microcontroller, and then, it creates an entry for the
cron daemon to automatically launch the task. To achieve
this, cron issues a request to the Internal Client, which creates
the Swift request and puts it into a queue until the nodes have
sufficient resources to execute it.

V. APPLICATIONS

In this section, we show some of the applications that our
framework can support and the ease with which these applica-
tions can be built on top of Swift. As many other object stores,
Swift, at the finest level, works at the object level, acting as
simple repository of data. One of the outstanding features of
Vertigo is that with simple programming abstractions, we can
operate at the “content level”, and for instance, automate the
management of the objects according to the their state or the
content itself. Here we provide some of these examples. All
of them have been implemented over Swift and extensively
evaluated in the next section.

Automated Deletion. A representative application of auto-
mated management is self-deletion, where certain objects self-
destruct after a certain period of time or number of get
operations. Such objects are meaningful for security applica-
tions. For instance, data protection and privacy laws in Europe7

demand the deletion of personal data after a given retention
time.

While components of the storage service may be put in
place to periodically discover which objects are eligible for
deletion, a more natural approach is to associate an automated
deletion policy to each sensitive object and let it destroy
itself8. This model offers several advantages over a centralized
approach. For instance, it is more robust, since it does not
depend on the effectiveness of the scheduled discovery jobs
or any logically centralized management of deletions. On the
contrary, each object decides itself when to be self-destructed
without interfering with the rest, making the system more
robust against failures and attacks.

Because an object may have dependencies on other objects,
another characteristic of Vertigo is that allows to describe such
dependencies in a metadata file, so when an object meets the
conditions to be self-destructed, the micro-controller will also
delete the related objects.

As a basic example, we have associated a micro-controller
with an onGet trigger to implement objects that choose to
delete themselves after being read a limited number of times.

7EU law applies to the processing of personal data as defined in article 2
of Directive 95/46/EC, namely to any information relating to an identified or
identifiable natural person.

8We note that an object does not delete itself immediately, but rather stays
available until all replicas are deleted due to eventual consistency.

This limited-read objects could be used to keep personal data
only for the number of runs that are absolutely necessary for
their processing.

Content Level Access Control. With Vertigo, it is very easy
to implement advanced forms of access control. Typically,
access control in Object Storage operates at the granularity of
objects, and hence, once an object is accessible to some party,
he gets the full content of the object. Swift also follows this
“all or nothing” approach where the access to objects inside
a container is enforced through access control lists (ACLs).
Such an access control mechanism may be insufficient in many
cases, in particular, when objects contain sensitive content.

In the exercise to show another capability of our framework,
we show how content level access control can be realized very
easily in Swift thanks to our micro-controller abstraction. By
“content level”, we mean that Swift users will be able to access
to certain parts of an object based on their credentials. To
give a concrete example, consider the publicly available Adult
dataset, from the UCI Machine Learning Repository9, which
contains about 48, 000 rows of census information. Each row
contains attributes like race, sex and marital-status,
which combined with explicit identifiers such as the SSN10

that identify the record holders may leak sensitive information
about a given individual. As a result, the records of this object
should be accessed differently depending upon the user role.
For instance, while an“FBI agent” should be able to access to
all fields and issue an SQL query:

Q1 : SELECT SSN, age, education, marital-status, race, sex,
relationship, capital-gain, native-country FROM adult.data

,

a “census analyst” could be restricted to run SQL queries on
a smaller view:

Q2 : SELECT SSN, age, education, capital-gain,
native-country FROM adult.data

To implement this example, we have linked a micro-controller
to an onGet trigger to enforce content level access control
on the object adult.data. We have defined a simple access
policy that depending on the use role, “FBI agent” or “census
analyst”, allows to run queries on all the fields (Q1) or just
onto smaller projection view (Q2).

This simple access policy has been stored as the metadata of
the micro-controller, i.e., in the JSON formatted file clac.md.
When a SQL query comes for the object adult.data, the
target object server first checks the Swift ACL. If the object
is accessible by that user, the micro-controller then reads the
content level policy, executing the SQL query only if the user
has the appropriate role. The main point of this example is
that it shows how our framework enables an object to change
its behavior to suit the requirements of a given application,
thanks to the set of micro-controllers that specify how the
object behaves.

Automated Prefetching. Among other features, Vertigo also
provides a platform for managing the storage hierarchy. One
clear example of this is prefetching. Prefetching adds effi-
ciency because it actively preloads objects into a cache. And as
a result, it can minimize disk IO operations. The distinguishing

9http://archive.ics.uci.edu/ml/datasets/Adult
10As the Adult dataset does not contain explicit identifiers, we added a

random SSN to each row using the Fake Name Generator.
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characteristic of our framework is that prefetching can be done
per object to suit the application-specific requirements instead
of system-wide. This flexibility is useful for applications that
put different degrees of emphasis on performance and latency.
For instance, based on the past surfing activities, an access to
an HTML file may preload objects of other pages.

As a basic example, we have implemented a simple Web
prefetching mechanism. When a user stores an HTML file for
the first time, a micro-controller associated with an onPut
trigger parses it to identify the embedded objects. The result
of this process is a list of the Swift objects that compose each
specific HTLM document. Such a list is stored in JSON format
in the metadata file prefetching.md to enable the onGet
micro-controller to preload all the embedded objects into the
memcached [14] when the HTML file is fetched as a result
of cache miss. Caching is done at the proxy servers for fast
retrieval and to lighten the read load on the object servers.

Active Storage Orchestration. Finally, another feature of our
framework is that it can bring computation close to data as
another active storage framework. Although that idea is not
a new concept, we wanted to show it here as a property of
our SDS management framework. This capability has been
inherited by the IBM Storlet Engine. However, our framework
permits the pipelining of consecutive computations that is
not possible to perform with the IBM Storlet Engine. This
capability is also important for data management, as it allows
to perform a sequence of transformations on an object to
enforce a storage policy. For instance, a tenant may associate
an onPut micro-controller with a large document of type
“application/xml” to detect the differences with a previous
version of this document and afterward use gzip to compress
the resulting deltas. Also, this type of micro-controllers may be
very useful to orchestrate active storage tasks and implement
ELT (extract, load, and transform) functions. With our micro-
controllers, we can provide an intermediary transformation
layer between raw object storage and (big) data analytics.

As a simple example, we have built a pipeline of two active
storage tasks orchestrated by an onGet micro-contoller. The
input object is a PDF file that first goes through a transcoding
task to convert it to a text file which is then input to a grep
task to output only the lines that match a query. grep has
been utilized to micro-benchmark systems like Hadoop and
Spark [15], which shows the potential of our framework for
data transformations.

VI. EVALUATION

We ran micro-benchmarks to measure the overheads asso-
ciated with our micro-controllers. We did so by running the
four applications introduced in V, because they cover all the
features of our novel SDS framework.

A. System Setup

Our experimental testbed consisted of a host (or client) with
2VCPUs and 4GB RAM. On the server side, we deployed
Vertigo in an 8-machines rack OpenStack Swift (kilo version)
installation formed by 1 proxy node Dell PowerEdge R320
with 12GB RAM and 7 storage nodes Dell PowerEdge R320
with 8GB RAM. All of these machines, including the client,
were connected via GbE. All the rack machines ran Ubuntu
Server 14.04. The client host ran Ubutnu 14.04.2 CloudImage.
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Fig. 4. Micro-controller execution time

B. Application Setup
Here we describe the specific setup for the four applications:

Automated Deletion. We utilized a random 100MB file. This
use case represents the real overhead of Vertigo, because the
micro-controller does not need to execute any Storlet, which
will demonstrate the lightweight overhead of our approach.

Content Level Access Control. We used the dataset described
in Section V but we extended to 100MB. As explained before,
the dataset content is restricted to the type of user that launches
the SQL query to the file. To this aim, we used Swift user roles
to return only specific fields. In this case, the micro-controller
reads from his metadata file the fields allowed for the user role
(age, education, capital-gain, native-country),
and then call the SQL Storlet to filter it.

Automated Prefetching. We took as an HTML file the Google
HTML5 slide template11 for creating Web presentations, which
consists of a single HTML document (index.html) and
several embedded objects, including Javascript and 10 image
files of around 3.5MB. Since it is a presentation file, it is thus
susceptible of simultaneous reading by multiple users (think of
as a university lecture), for we believed it to be a good example
of caching with Web prefetching. Although more sophisticated
prediction techniques for Web prefetching should be applied
in practice, the present example is by far sufficient to show
the inventive aspects of Vertigo.

To simulate the HTTP requests and generate the workload,
we made use of Apache JMeter12.

Active Storage Orchestration. For this experiment, we used
a single PDF document of 100MB. More precisely, the onGet
micro-controller instrumented the grep Storlet to return all
lines of this document that starts with ‘a’ (regex:“ˆa”), after
being converted into text with the transcoder Storlet. As
discussed before, this is a very nice example of active storage
orchestration in which a pipeline of two active storage tasks is
built at runtime. Notice that the grep Storlet needs to have
all the text before filtering it with the regular expression, so
our interception middleware remains dormant until this Storlet
starts to return the answer.

C. Application characteristics
Table I shows information of our four Vertigo applications.

The Instructions column gives the number of Java instructions

11https://code.google.com/archive/p/html5slides/
12http://jmeter.apache.org/
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required to execute a micro-controller, while Execution Time
gives the execution time for that micro-controller (the average
of 200 executions as shown in Fig. 4). Code size shows the
size of each micro-controller. From this table, it can be seen
that our micro-controllers are very lightweight and the speed
at which they run is always inferior to 1 ms.

TABLE I
MICRO-CONTROLLER INFORMATION

Application Instructions Execution
Time(mean)

Code
Size

Automated Deletion ≈ 15 0.66ms 2.2KB

Content Level Access Control ≈ 10 0.48ms 1.8KB

Automated Prefetching ≈ 5 0.30ms 1.6KB

Active Storage Orchestration ≈ 5 0.27ms 1.5KB

D. Results

We evaluated the the overhead of Vertigo by analyzing the
improvement on the overall execution time. In this experiment,
get operations were performed on the same Swift objects
that make up each application. More specifically, we measured
the response time, the transfer time and the total amount of
data pushed out of Swift to the clients. We also recorded the
individual execution times of the interception middleware, the
micro-controllers and the involved Storlets. All the tests were
run 200 times and the results were averaged to create the plots
in Fig. 5, Fig. 6 and Fig. 7.

We evaluated the following two configurations: Traditional
storage or baseline configuration (TS), namely, Swift without
Vertigo, and the micro-controlled version of Swift (MC).

Execution Time. Fig. 5 shows the execution time breakdown
for the different applications. We split the execution time into
response time, transfer time and process time. The response
time includes the time of processing the corresponding get
request until the first byte of the object is received by the client
host. The transfer time stands for the time elapsed between the
reception of the first and the last byte of the object at the client
host. The process time includes all the time that the client host
spends running some computation over the data.

Overall, the system overhead is very low in all applications.
For automated deletion, the overhead is only of 41ms. For the
content level access control use case, the TS configuration
needs to download all the file before filtering it. However, the
MC configuration only requires to transfer 30% of the data. In
this case. the main source of overhead comes from the fact the
interception middleware remains waiting for the SQL Storlet
to send the query results back to the client host as depicted in
Fig. 7(b). Despite this, the MC configuration saves 1.6 seconds
in comparison with the TS one.

In the automated prefetching application, the fact that all
images are preloaded into the proxy server memcached saves
around 54ms in the whole execution time as shown in Fig. 5(c).

Finally, Fig. 5(d) reports the execution time of the active
storage orchestration use case. With no micro-controllers (TS),
the client needs to download the complete PDF file, transcode
it to text, and then apply the grep filter. Making this operation
on the server side with Vertigo, the client hosts saves around
1.86 seconds, as Swift only needs to transfer the result of the
grep Storlet.

Bandwidth Usage. Fig. 6 illustrates the total volume of data
received by the client host in both configurations. As clearly
shown in this figure, Vertigo can save significant bandwidth in
some scenarios. For instance, for content level access control,
it can avoid transferring 71, 7 MB of content, depending on the
user role as a result of filtering out sensitive information. Such
a property is very important, since it increases the scalability of
a Swift deployment by transforming underutilized CPU cycles
into bandwidth savings. For example, we could associate a
micro-controller to certain objects and monitor their bandwidth
usage. Later on, a periodical onTimer micro-controller could
preprocess that objects to save bandwidth or to help perform
sophisticated management policies.

Timeline. Fig. 7 shows the timeline of the get requests for
the different uses cases, both on the client side (response and
transfer) and the server side (middleware, micro-controller and
Storlets).

For automated deletion, the onGet micro-controller does
not need to call any Storlet, as shown in Fig. 7(a). Hence,
when the micro-controller informs the interception middleware
about this fact, Swift can start sending data to the user. In
parallel, the micro-controller updates the number of accesses
and checks if it is necessary to delete the object.

For the access control use case, however, the interception
middleware must wait for the SQL Storlet to start, introducing
some overhead into the system as depicted in Fig. 7(b). Despite
this, the micro-controlled version of this use case is still more
efficient as discussed before.

The timeline for the prefetching use case, and in all cases
that is not necessary to process the data with a Storlet,
the timeline will be the same as in the automated deletion
application, with the difference in the response time. We
assume that when a user uploads the index.html file, it
has been executed a Storlet that extracts all static resources,
and stores their Swift keys to the metadata. Upon the first get
request, the micro-controller will load these static resources to
the proxy server cache through the Internal Client. In this way,
when the browser interprets the HTML file, and also for the
next 199 get requests, all resources will be already preloaded
into the cache, saving IO bandwidth and time.

Finally, the timeline for the active storage orchestration use
case is shown in Fig. 7(c). The grep Storlet needs to have
all the text before filtering it with the regular expression, and
hence, the middleware remains idle until that Storlet starts to
return the result of the processing.

VII. CONCLUSION

This paper presents a novel software-defined architecture for
Object Storage. Our architecture introduces the novel concept
of object-based micro-controllers as a decentralized mecha-
nism to transparently extend and intercept Object Stores. Our
micro-controllers (control plane) are executed in a sandboxed
environment in the storage nodes and they can intercept any
life cycle request in the desired objects (data plane).

We have demonstrated how micro-controllers increase the
programmability and data management of Object Stores with
concrete examples: pre-fetching, content-level access control,
and automated deletion. Furthermore, we demonstrated that
our interception framework is very lightweight achieving low
overheads. We believe that object micro-controllers can be-
come a useful programming abstraction for extending Object
Storage systems.
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Fig. 5. Execution time breakdown for different applications
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Fig. 6. Total amount of data transferred for different applications
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