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1 Executive summary

In this document, we describe in depth the technical aspects of the architecture of IOStack, as well as
the framework employed to validate the correctness and performances of its components.

On the one hand, we describe the main elements of IOStack’s architecture: SDS Controller, Filter
Framework, Dynamic Storage Policies Framework, Storage Monitoring and Compute Cluster Monitoring &
Cross-layer Strategies. First, the SDS Controller enables an administrator to manage the SDS system
via a user-friendly web dashboard, natively integrated in the OpenStack dahsboard. Among other
functionalities, the IOStack dashboard exposes the SDS Controller API to administrators, which is
the gateway to orchestrate and manage the underlying SDS services in IOStack. In this document,
we describe the SDS Controller API that enables managing SDS services for both object (Swift) and
block storage (Cinder) systems.

In this sense, one of the main services accessible via the SDS Controller API is the IOStack filter
framework. In IOStack, a storage filter can be defined as a performance control or general-purpose data
transformation that applies to specific data flows (e.g., compression, IO bandwidth differentiation).
Thus, the IOStack filter framework enables administrators to enforce, delete or modify the behavior
of storage filters on a tenant’s data flows, for instance. We also describe the filter framework for both
object and block storage systems. Compared to existing SDS systems, IOStack is the first to enable the
enforcement of general-purpose data transformations on data flows with a high degree of flexibility.

Furthermore, from an administrator’s viewpoint, the feature that glues together the management
of both block and object storage systems is the definition of dynamic storage policies. That is, the SDS
Controller enables datacenter administrators to write storage policies, thanks to a simple yet pow-
erful domain specific language (DSL). For instance, a datacenter administrator may define the use
of a compression filter to tenant’s T1 data flows in case its write throughput goes below a certain
threshold: FOR T1 WHEN Throughput < 10MBps DO SET Compression. The system will monitor the
Throughput of tenants and it will enforce automatically a compression filter if the condition is satis-
tied, irrespective of the target storage system (block, object). As we argue in the document, this novel
approach of managing general-purpose storage services has high potential.

Clearly, dynamic storage policies are impractical without a proper storage monitoring system.
The last point of the SDS architecture of IOStack refers to a unified monitoring of storage metrics for
both object and block storage systems based on CollectD and Grafana.

Similarly, we equipped the compute cluster with a monitoring system to understand the behavior
and requirements of Big Data applications. Based on such monitoring information, we propose to en-
able direct cooperation between disaggregated compute and storage clusters via cross-layer schedul-
ing and provisioning mechanisms. Currently, IOStack supports i) explicit! computation offloading
to the storage system and, ii) a data locality service to enable co-location of compute instances (VMs,
containers) on the storage servers where the required data resides. We argue that this type of coop-
eration opens the door for a variety of new optimizations regarding data analytics in the cloud.

On the other hand, we present the benchmarking framework that will validate the correct opera-
tion and quantify the performance of the SDS layer.

Our benchmarking framework consists of three main pillars: Testing platform, synthetic benchmarks
and trace replays. The testing platform refers to the available hardware available in the IOStack project
to deploy and test newly developed IOStack components. The first phase in the IOStack benchmark-
ing lifecycle are synthetic benchmarks; that is, we have collected a battery of standard stress-test
oriented tools to perform experiments with variable workloads in a controller manner.

Once the synthetic benchmark phase ends, we propose to benefit from our use-case partners to
test IOStack under more realistic workloads. In particular, all use-case partners will provide aca-
demic partners with storage workload traces at different levels (block level, file system level). These
traces, in turn, will provide academic partners with valuable opportunities of researching novel
mechanisms for adapting IOStack to situations that cannot be observed in synthetic workloads. This

1“Explicit” means that the request to execute the filter is build by the client.
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“virtuous circle” in the benchmarking lifecycle of the project will make the platform mature enough
to be presented as a usable product prototype at the end of the project.

Finally, we present experiments of the IOStack prototype that certify the correct operation of some
of its features. In particular, we show ii) the enforcement of storage filters in multi-tenant workloads,
ii) the performance of the IO bandwidth differentiation filter, and iii) the advantages for GridPocket
(IOStack use-case) of pushing-down simple computations to the storage cluster from the compute
cluster in the data analytics process.
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2 10Stack: Motivation, Goals and Building Blocks

Nowadays, the amount of Big Data stored in cloud storage services is growing at unprecedented
rates, as well as the variety and heterogeneity of workloads supported by datacenter infrastructures.
At the same time, datacenter administrators should respond with increasing agility to changing busi-
ness demands in a cost-effective manner, which is cumbersome due to the complexity of large cloud
environments.

Software-Defined Storage (SDS) has recently become a prime candidate to simplify storage man-
agement in the cloud. To ease the work of datacenter administrators, the incipient literature in the
field defines that SDS should provide a storage infrastructure with ii) storage automation, ii) optimiza-
tion, and iii) policy-based provisioning [1, 2]. Normally, this is achieved by explicitly decoupling control
and data planes at the storage layer.

Storage automation enables easy provisioning of resources to tenants from a datacenter adminis-
trator’s viewpoint. This includes the virtualization of storage services (volumes, file-systems) on top
of performance-specific servers and network fabrics orchestrated by the SDS system. Storage opti-
mization may be seen as an advanced and dynamic case of storage automation where resources are
automatically allocated to the most suitable workloads, dealing with potential heterogeneity across
both workloads and resources [2].

Moreover, SDS enables the enforcement of policies to data flows for providing performance con-
trol and value-added services to the storage system [1]. This includes, for instance, the application of
data reduction services, computations or IO bandwidth limits on a tenant’s storage requests [3].

At the storage layer, the objective of IOStack is to enable storage automation and optimization
based on Software-Defined Storage (SDS) models, while simplifying the administration of the storage
system via policy-based provisioning. To better understand our goals, let us draw an example of a
multi-tenant Big Data scenario.

2.1 A Motivating Example

Imagine an object store and 3 different tenants that access it concurrently. On the one hand, ten-
ant T1 represents several servers that are uploading data gathered from a sensor network. On the
other hand, tenants T2 and T3 represent sets of virtual machines in a compute cluster that perform
computations on data objects containing logs. This is shown in Fig. 1.

In such scenario, a datacenter administrator may wish to enforce distinct policies to these tenants
for optimizing the system’s operation. Intuitively, he could apply a data compression policy to T1 for
reducing its storage space demands, given that log-like data is potentially redundant [4]. Tenants T2
and T3, however, may apply data filters to import only the fraction of a dataset actually needed for a
specific computation task, thus reducing download traffic [5].

~ -
VM VM VM
T T3 R
Servers Storing
Sensor Information
(T

Compute Cluster
(T2 and T3)

@

Object Store

Figure 1: Example of an OpenStack Swift deployment (proxy nodes in dark blue, storage nodes in
light blue) concurrently accessed by various tenants. Storage policies may be enforced on object
requests to optimize the system and enrich the service.

Naturally, the enforcement of these policies may permit an object store to manage concurrent
workloads more efficiently. However, today’s object stores are lacking from a flexible and transparent
way of enforcing storage policies on object requests. This is precisely the objective of IOStack.
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2.2 Mission of IOStack

The previous example opens the door to apply storage optimizations under multi-tenant workloads [2],
as well as to offer different Quality-of-Service (QoS) policies based on a tenant’s requirements. Moreover,
from a datacenter administrator’s perspective, these goals need to be achieved transparently, involv-
ing minimal human intervention. To realize this vision, IOStack? features:

* Policy-based provisioning: In IOStack, datacenter administrators simply assign provisioning
policies to tenants. For example, a static policy may be defined to enforce compression (e.g.,
gzip) on tenant T1’s requests as {Compression, [gzip]} = T1. As we will see, after establishing
that policy IOStack transparently applies data compression on T1’s requests. Moreover, IOStack
provides dynamic policies with monitoring information in order to change a tenant’s QoS either
on demand or by a workload-based decision.

* Filters: A filter represents the actual logic executed on an storage request to enforce a policy.
IOStack has a suitable architecture to favor the integration of new filters by third-parties that in-
crease the value and functionality of OpenStack storage systems (block, object). IOStack also
includes a ready-to-use filter framework that enables the execution of user code on storage requests
at different stages along a request’s write/read path. Thus, a developer integrating a new filter
only needs to contribute the filter’s logic; the deployment and execution of the filter is managed
by I0Stack.

To achieve these high-level goals, there are several software building blocks involved that are
responsible for different tasks. Besides, it should be noted that these building blocks may differ
depending on the target storage system: object and block storage. In the following, we overview the
main building blocks that will constitute the storage architecture of IOStack?.

Compute Cluster

Workloads & Scheduling

SDS Controller & Policies

SDS APIs

Filter Framework

Monitoring

Object Storage = Block Storage

Validation and Benchmarking

Figure 2: Overview of IOStack architectural building blocks described in this document.

2http://iostack.eu
Shttps://github.com/iostackproject
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2.3 1OStack Building Blocks

As visible in Fig. 2, the IOStack storage architecture can be divided in five main components: SDS
Controller, Filter Framework, Dynamic Storage Policies, Storage Monitoring and Compute Cluster. More-
over, we include a Validation and Benchmarking Framework that provides methodologies to exercise
and analyze their correctness and performance of all these components. We briefly describe each
component as follows:

SDS Controller: The SDS Controller represents the control plane of IOStack*. The SDS Controller is
also the contact point of a datacenter administrator with IOStack, enabling simplified management of
the storage layer®. The SDS controller gives direct access to the SDS Controller API, which abstracts
the available services that the underlying SDS system offers (see Section 3). Among these services,
we include the management of filters, the provisioning of performance-specific storage resources or
the access to real-time monitoring metrics. Naturally, the SDS storage APIs vary depending on the
targeted storage system (block/object), and may evolve during the development of the project. The
current IOStack APIs are explained in Section 3.2.

Filter Framework: In IOStack, filters enable arbitrary transformation on data flows. These transfor-
mations may be enforced at one or various stages through the write/read path, based on a storage
policy defined in the SDS Controller. In Sections 4 and 5, we describe the IOStack filter framework
for both object” and block storage®, respectively. Furthermore, we describe the currently available
filters in IOStack, including an IO bandwidth differentiation filter” and a SQL push-down filter for
Spark that enables to explicitly offload specific computations to the storage cluster (see Section 4.1.3).

Dynamic Storage Policies: A salient feature of IOStack is that it enables administrators to define
dynamic storage policies. Essentially, these storage policies trigger a filter (or a set of filters) based on
a live workload-based decision. To this end, the SDS Controller offers a Domain Specific Language
(DSL) that makes it easy to manage and optimize —statically or dynamically— the storage system,
depending on the existing workloads. Also, the SDS Controller unifies the management of IOStack
for object and block storage. The dynamic policy framework is depicted in detail in Section 6.

Storage Monitoring: Naturally, dynamic storage policies need from monitoring information for trig-
gering a filter (or a set of filters) based on a live workload-based decision. Section 7 describes the

IOStack monitoring system used to track the activity of both block and object storage systems!?.

Compute Cluster: Monitoring, Analysis and Cross-layer Strategies: IOStack will enable disaggre-
gated compute and storage clusters to cooperate for optimizing Big Data analytics in the cloud. To
this end, IOStack currently provides explicit computation off-loading to the storage and a data lo-
cality service to co-locate compute instances (VMs, Containers) with the required data at the storage
cluster. As we describe in Section 8, such a cross-layer scheduling and provisioning strategies may
improve data analytics in the cloud, where storage and compute clusters are disaggregated.

Validation and Benchmarking Framework: To evaluate the progress and correctness of the develop-
ment of IOStack, we provide a set of testing and benchmarking methodologies. These methodologies
include benchmarking tools!!, testing platforms, trace replays and experiments based on use case
workloads. Moreover, we also show a battery of experiments to validate some IOStack components.
We describe our benchmarking framework in Section 9.

In the following, we describe the architecture and operation of IOStack’s SDS Controller.

4Source code available at: https://github.com/iostackproject/SDS-Controller-for-0bject-Storage

5Source code available at: https://github. com/iostackproject/sds_block_api

6Source code available at: https://github.com/iostackproject/SDS-dashboard

7Source code available at: https://github.com/iostackproject/SDS-Storlet-Middleware

8Source code available at: https://github.com/iostackproject/Konnector

9Source code available at: https://github.com/iostackproject/I0-Bandwidth-Differentiation
10Source code available at: https://github. com/iostackproject/SDS-Storage-Monitoring-Swift
HSource code available at: https://github. com/iostackproject/SDGen
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3 SDS Controller

A central element of IOStack’s architecture is the SDS Controller as it constitutes the control plane
of the SDS system. The SDS Controller is not a monolithic entity, but a framework itself that is
designed to accommodate an arbitrary number of filters. In what follows, we describe the design of
the SDS Controller and its integration with the rest of building blocks in IOStack. Specifically, the
SDS Controller is constituted by: 10Stack Dashboard, SDS Controller API and the Metadata Store.

3.1 I0OStack Administration Dashboard

The first contact point between a datacenter administrator and IOStack is the dashboard. The I0Stack
dashboard is a web front-end that enables administrators to easily manage the SDS framework via a
user-friendly GUI (graphical user interface). In particular, the IOStack dashboard is integrated in the
OpenStack dashboard (Horizon!?); this decision enables administrators to benefit from a centralized
administration point for the entire system with a familiar GUI. The main objective of the IOStack
dashboard is to provide administrators with a simple way of accessing the underlying SDS Controller
API (see Section 3.2) for managing the system, as well as to provide information of the current state
of the storage and compute clusters.

To this end, the IOStack dashboard has 3 main administration areas: object storage, block storage
and system monitoring. On the one hand, both object storage and block storage administration areas
refer to the IOStack capabilities for managing OpenStack Swift and OpenStack Cinder, respectively.
We separate the administration areas of both systems due to their inherent differences, which are
reflected also in the SDS Controller API, as we show later on. All in all, in both areas there are
common elements, such as the operations to define policies and enforce storage filters.

On the other hand, the system monitoring area of IOStack’s dashboard provides real-time infor-
mation of the state of the storage system and the compute cluster. This is important for an admin-
istrator in order to understand the state of both compute and storage clusters at any moment for
reacting accordingly. In essence, this area provides a variety of real-time plots based on CollectD'?
and Grafana!? that consume monitoring events from both the storage and compute cluster monitor-
ing systems. While the monitoring of the storage cluster is further discussed in Section 7, the compute
cluster monitoring is extensively described in deliverable 5.1.

Thus, one of the essential goals of the IOStack dashboard it to offer a user-friendly way of man-
aging the internal functionality of the SDS system, which exposed as an API. Next, we describe the
goals of the SDS Controller API in IOStack.

3.2 Understanding the SDS Controller API

The SDS Controller API is the gateway for managing the underlying SDS services in IOStack. From
a datacenter’s administrator viewpoint, the SDS Controller API provides the opportunity to orches-
trate provisioning policies with a simple Representational State Transfer (REST) API calls!®. This
standard technology makes the SDS Controller API easy to manage from Web or other types of
clients.

To better understand the role of the SDS Controller in the IOStack architecture, let us retake the
example proposed in Fig. 1. In that example, the administrator wants to apply a data compression
policy to T1 in order to save storage space. Thus, the administrator sends a simple HTTP request to
the SDS Controller such as:
http://sds-controller/filters/T1/deploy/compression
Body: {"engine":"gzip"}

When the SDS Controller receives that request, it automatically forwards the request to the appro-
priate filter subscribed in the system (compression filter). Then, the filter’s policy manager should
handle the request and persist the associated changes in the IOStack metadata store. Thus, once this

2http://docs. openstack.org/developer/horizon
Bhttp://collectd.ord

"http://grafana.org
https://en.wikipedia.org/wiki/Representational _state_transfer
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change is propagated to the filter’s data plane, every data object stored/retrieved by tenant T1 will
be (de)compressed using gzip compression engine.

Overall, we point out that the datacenter administrator only needs to send a simple request to the
SDS Controller in order to transparently change the behavior of the storage system. Furthermore,
thanks to our dynamic policy framework (see Section 6), most calls to the SDS Controller API could
be automatically made by the system itself, depending on the workload at hand.

Naturally, the IOStack APl is an evolving entity as it is intended to federate as many SDS services
as possible to enrich the functionality of the storage layer. Next, we describe the main services already
integrated in the SDS Controller API that enable datacenter administrators to manage the SDS layer
in IOStack (see Fig. 3).

Volume Management
Block

Storage
API

Filter Framework

SDS Controller

—>
Dashboard » SDS Controller
Datacenter Metadata
Admin

Object
Storage
API

Filter Framework (Storlets)
10 bandwidth differentiation

Figure 3: Interaction of a datacenter administration with the different modules of IOStack’s SDS
Controller API. Moreover, the actions performed against the SDS Controller API reflect changes in
the SDS metadata sore.

SDS Controller API for Object Storage: In the first stages of the project, the consortium has exten-
sively focused their efforts on providing a rich filter framework for OpenStack Swift. While tech-
nically challenging, the enforcement of filters on data flows will provide unique opportunities for
optimizing multi-tenant Big Data workloads in the storage side. Specifically, the SDS Controller API
for object storage provides a battery of calls for managing a filter framework based on Storlets and a IO
bandwidth differentiation filter.

First, as we illustrate in Section 4, IOStack provides a general-purpose filter framework based
on IBM Storlets [6]. Any developer may create new filters that can be executed on particular object
request to provide data management or computation services, to name a few. In this sense, the SDS
Controller API for object storage provides a complete set of calls to perform the deployment and
management of Storlet filters (see Table 4.1a).

However, despite that our filter framework for object storage is very flexible, there are types
of filters that are difficult to implement efficiently via Storlets. For this reason, IOStack also enables
third party filters to be plugged-in as independent components of the architecture and managed via a
specific API This is the case when achieving IO differentiated bandwidth in a multi-tenant scenario;
such a filter requires low-level control of the underlying storage devices (disks, SSDs) in order to
provide fine-grained, high-performance IO bandwidth differentiation to various tenants. In Section
4.2 we provide the available calls for this filter, and experimental results are presented in Section 9.4.

Moreover, in the next stages of the project, this API will be expanded with calls to automate the
provisioning of performance-specific containers and/or accounts to customers. To wit, we will exploit
the already existing differentiated rings in OpenStack Swift to help administrators managing different
types of data redundancy strategies (e.g., replication, erasure codes).

SDS Controller API for Block Storage. Regarding the API for block storage, we have focused on
two main points: ii)block volume provisioning and ii) filter framework'®. In IOStack, block volumes

16Extensive details for the IOStack block storage subsystem can be found in Deliverable D3.1.
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are provisioned via a REST API in the SDS controller, so that administrators can easily provision
block volumes of definable characteristics and fabrics. The provisioning of block volumes is done via
advanced virtualization technologies and this mechanism is exposed and integrated in the IOStack
dashboard. The API for volume provisioning is depicted in Section 5.2.

Moreover, the block volume subsystem of IOStack has a filter framework, analogous to the object
storage one. The filter framework is based on LIO' and it essentially offers a client-side stage where
external code, namely filters, can be executed on volume IOs. We describe the API to manage the
filter framework for block storage in Section 5.3.

DSL Registry: As we describe in Section 6, we introduce in IOStack a new DSL language to en-
able administrators defining policies that will trigger the enforcement of storage filters under certain
workload conditions. To keep the definition of policies as simple as possible, in our DSL syntax we
enable administrators to refer with simple keywords, such as Compression to storage filters or other
elements within the framework. Similarly, an administrator may want to enforce the same policy to a
group of tenants, which yields that the management of tenant groups is important for defining poli-
cies. All this functionality is also managed via a REST API to a specific module called DSL Registry.
We describe the DSL Registry API (Table 6.3a) and the technical details of it in Section 6.3.

The federation of APIs from the available SDS services’ constitute our SDS Controller API. Clearly,
a primary objective of most of these calls is to change metadata at the SDS layer (e.g., set the enforce-
ment of a filter to a tenant). Therefore, the SDS metadata store is a fundamental part of the IOStack
architecture. Next, we describe the objectives and implementation of the metadata store in IOStack.

3.3 SDS Controller Metadata Store

All the metadata related to IOStack is persistently stored in the metada store, which resembles the
traditional concept of configuration management database (CMDB). Currently, the IOStack metadata
store contains metadata of policies and metadata of filters. On the one hand, metadata of policies refers
to the relationship of tenants and filters, and the conditions under a certain filter should be applied
to a tenant. On the other hand, metadata of filters is the necessary information for the deployment and
correct operation of a filter within the storage system.

To design the metadata store, we targeted three main requirements: performance, scalability and
flexibility. We justify these requirements as follows.

First, as we will describe later on, the enforcement of filters is transparent. That is, once a policy
has been defined, the system infers which filters (if any) would be applied upon the arrival of storage
operation at a certain moment. Naturally, the metadata store will need to serve a potentially high
number of requests in this regard, as it stores the information of policies. Moreover, it is worth noting
that the metadata store will receive a read-only workload as most queries will require reading metadata
items. Thus, creating and/or modifying metadata items, as introducing new policies in the system,
is likely to be a marginal part of the metadata activity.

Second, the metadata store should be easy to scale and work in a distributed fashion. That is, depend-
ing on the implementation of a filter, a potentially high number of machines may need to retrieve
metadata from the system. Thus, scaling-out metadata to an arbitrary number of servers can balance
metadata requests naturally, and in turn, improving query latencies and availability.

Moreover, the general-purpose filter framework of IOStack yields that the metadata of filters can
be very heterogeneous. For instance, as we describe further in this document, the number of parameters
needed to configure a compression filter may be quite different from the configuration of a bandwidth
differentiation filter. This was one of the main reasons to discard the use of traditional database
technologies, as it is complex to achieve such a degree of flexibility making use of SQL tables.

Considering these requirements, we resorted to an in-memory data structure store as the meta-
data layer of IOStack. In particular, we make use of Redis'®: a high-performance open-source in-
memory store. Redis provides advanced and high performance caching techniques, which fits per-

https://en.wikipedia.org/wiki/LIO_(SCSI_target).
Bhttp://redis.io
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fectly the read-only workload expected in the IOStack SDS framework. Moreover, Redis enables
generic objects to be stored in memory, as they are abstracted via serialization techniques into byte-
level representations. Redis also provides developers with a large collection of complex data struc-
tures (e.g., maps, lists) in order to facilitate programming with metadata objects.

Due to its distributed nature, Redis enables a variety of deployment strategies depending on
the target scenario. For instance, we might deploy the metadata store in an specialized cluster (i.e.,
separated from the storage servers), or we might benefit from the existing storage infrastructure by
deploying Redis on a subset of storage servers (e.g., proxy nodes in OpenStack Swift).

One of the main goals of the SDS Controller is to enable the execution of a storage filter in IOStack.
In what follows, we describe the IOStack filter framework for both object and block storage, as well
as the currently available filters.

4 Filters in Object Storage

In this section, we describe the filters that are currently available in IOStack for OpenStack Swift
(object storage). First, we present our filter framework for object storage based on IBM Storlets; this
framework enables administrators to deploy and execute general-purpose code on specific object
requests. Based on this framework, we describe a battery of filters already implemented and tested
in Section 9.4 (data reduction, compute-close-to-data).

However, despite their flexibility, it is difficult to efficiently implement all types of filters mak-
ing use of IBM Storlets. That is, there are some types of filters that may need specific, low-level
requirements and control of the underlying storage infrastructure to be enforced in a fine-grained,
high performance manner. This is the case when providing differentiated 10 bandwidth QoS to ten-
ants. Such a filter requires having a “physical” notion of the IO bandwidth being consumed at a
certain moment at any storage node, as well as the available storage nodes that may contain copies
of currently requested object to take real-time scheduling decisions. Therefore, since IO bandwidth
differentiation is a primary feature of SDS system, in IOStack we provide this service as a separate
filter component integrated in the IOStack architecture.

4.1 Filter Framework with Storlets

To easily design and deploy a wide variety of filters, IOStack provides its own filter framework that
enables developers to run general-purpose code on object requests. In a sense, IOStack borrows ideas
from active storage literature [7, 8] as a mean of building filters to enforce policies.

4.1.1 IBM Storlets

The core of IOStack’s filter framework is based on IBM Storlets [6, 9]. To enable the use of Storlets,
the storage system needs to be augmented with a Storlet Engine that provides the storage cloud with
capability to run Storlets in a sandbox that insulates the Storlet from the rest of the system, other
Storlets and for a given Storlet from other tenants. The Storlet Engine provides a powerful exten-
sion mechanism to the cloud storage without changing its code; thus making the storage flexible,
customizable and extensible. It expands the storage system’s capability from only storing data to
directly producing value from the data.

In IOStack, we make use of the Storlet Engine for OpenStack Swift Object Storage. Storlets ex-
tend OpenStack Swift with the capability to run computations near the data in a secure and isolated
manner making use of Docker! as application container. Anyway, the Storlet Engine architecture is
generic with respect to the cloud object storage system. It includes two main services:

» Extension Service: connects to the object storage and evaluates whether a Storlet should be trig-
gered and in which storage node.

* Execution Service: deploys and executes Storlets in a secure manner.

The extension service is tied to the storage system at interception points and identifies requests
for Storlets. In particular, it examines the metadata fields in the request and by evaluating the defined

Bhttps://www.docker . com/
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Figure 4: Architecture of IOStack filter framework for object storage. Via the API, the administrator
defines the enforcement of a filter on a tenant’s requests and this decision is persisted in the IOStack
metadata store. Then, upon the arrival of a new object request, a IOStack module in the Swift proxy
checks the metadata store and infers whether the filter should be enforce or not. Depending on its
configuration, the filter enforcement/execution will take place either at the proxy or the storage node.

Storlets to be executed. The extension service then communicates with one of the execution services
that executes the Storlet in a sandbox according to the client request and its credentials. The only
component that will change when implementing the Storlet Engine in one cloud storage or another
is the intercept handler of the extension service. The intercept handler needs to adapt the hooks to
the object storage and may need for that either the source code or an open interface to internally
connect to cloud storage.

The Storlet Engine can reside in the storage interface node (i.e., proxy node), and in the storage
local node (i.e., storage node). Intercepting requests in both proxy and storage node stages is possible
thanks to the WSGI middleware integrated in OpenStack Swift?’ that can be used to “wrap” the
storage request and response of a Python WSGI application (i.e. a webapp, or REST/HTTP API), like
Swift’'s WSGI servers (proxy-server, account-server, container-server, object-server). In fact, Swift
uses middleware to add (sometimes optional) behaviors to the Swift WSGI servers.

Naturally, executing an Storlet either at the proxy or storage node stage has implications. That is,
the Swift proxy service is responsible for the external interface. It is generally more CPU and network
intensive; thus, the proxy nodes that host those proxy services have generally powerful CPUs and
large network bandwidth. The Swift object service holds the actual data objects. The object services
are generally more disk and I/O intensive; thus, the storage nodes that host those object services have
generally large disks and good I/O throughput. In IOStack, Storlets can run either in the interface
proxy servers or in the local object servers to take advantages of each node underutilized resources.
As we show in Section 9.4, depending on whether the task to be done is more compute intensive or
IO intensive, it is preferable to execute Storlets in the proxy or storage nodes, respectively.

The Storlet Engine supports a synchronous operation mode. That is, the Storlet runs within the HTTP
request/response that initiated its execution, namely the HTTP request ends after the Storlet ends
its execution. For this reason, Storlets are specifically tailored for data management and streaming
operations on object requests.

Moreover, a Storlets Maketplace can be used as a repository of Storlets from different vendors.
An application on top of the storage can mashup and use different Storlets from the marketplace for
creating its functionality. In IOStack, this marketplace is managed by the datacenter administrator
under stringent security requirements. In this scenario, the same Storlet code can be used to enforce
filters in various tenants, drastically reducing the effort on filter development.

2pttp://docs. openstack. org/developer/swift/development_middleware.html

Page 10 of 48


http://docs.openstack.org/developer/swift/development_middleware.html

H2020-ICT-2014-7-1 STREP

30/06/2015 IOStack
[ REST Call Description | HTTP Method [ URL |

Create a filter POST /filters

List filters GET /filters

Delete a filter DELETE /filters/:filter_id

Get filter metadata GET /filters/:filter_id

Update filter medatada PUT /filters/:filter_id

Upload a filter’s logic PUT /filters/:filter_id/data

List deployed filters of an account GET /filters/:account_id/deploy

Deploy a filter PUT /filters/:account_id/deploy/:filter_id

Undeploy a filter PUT /filters/:account_id/undeploy/:filter_id

Create a dependency POST /filters/dependencies

List dependencies GET /filters/dependencies

Delete a dependency DELETE /filters/dependencies/:dependency_id

Get dependency metadata GET /filters/dependencies/:dependency_id

Update dependency metadata PUT /filters/dependencies/:dependency_id

Upload dependency data PUT /filters/dependencies/:dependency_id/data

List deployed dependencies of an account | GET /filters/dependencies/:account_id/deploy

Deploy a dependency PUT /filters/dependencies/:account_id/deploy/:dependency_id

Undeploy a filter PUT /filters/dependencies/:account_id/undeploy/:dependency_id

Table 4.1a: SDS Controller API for the filter framework for object storage. Regarding our filter frame-
work for object storage, filters are implemented as Storlets.

4.1.2 Storlet Orchestration and Management

As previously described, IBM Storlets provide the ground to support low-level data transformations
on object requests (i.e., filters). In IOStack, we aim at intelligently managing and orchestrating Stor-
lets to leverage high-level SDS services. The architecture of the IOStack filter framework based on
Storlets is depicted on Fig. 4. In particular, it consists of 3 main components:

Storlet manager: The objective of the Storlet manager module is to provide a management interface
for Storlets code and their execution on particular requests in the SDS Controller. Concretely, this task
is done via a REST API integrated in the SDS Controller (see Table 4.1a).

Regarding the management of Storlet code, in Table 4.1a there two types of calls: filter and depen-
dency calls. Filter calls refer to those operations that manage the execution code of Storlets, such as
. jar files that offer compression or caching services. Moreover, Storlets may need external libraries
to operate, which are called dependencies in our terminology. For this reason, the second type of calls
are devoted to manage the dependencies that each Storlet need for their correct execution. As can
be observed, the API provided in the strolet manager enables an administrator to easily upload new
Storlet code to the system, specially via the IOStack dashboard.

Apart from managing the code and dependencies of Storlets, the most common task of the Storlet
manager module is to enable and administrator to define the enforcement of filters on a particular tenant
or account. For this reason, we provide in the API 3 calls to enable a datacenter administrator the
management of filter /tenant relationships: Deploy, Undeploy and List filters for a particular tenant.
As we describe in Section 6, IOStack will also make use of these calls to automatically trigger the
enforcement of filters under certain workload conditions.

Request classification: In IOStack, Storlets can be triggered either explicitly or implicitly, depend-
ing on whether the HTTP request to execute the Storlet is built by the client or by the SDS layer,
respectively. Since the explicit execution is interesting in some scenarios (see Section 4.1.3), it does
not require any additional software component. That is, a tenant can execute a REST API with the
appropriate headers to execute a Storlet. Conversely, to make the execution of Storlets implicit or
transparent from the client’s viewpoint requires additional efforts.

To this end, our filter framework discriminates the filters to be applied on a particular data flow at
the Swift’s proxy (see Fig. 4, Proxy Middleware). Technically, an IOStack module in the Swift proxy
middleware contacts the IOStack metadata store to infer the filters to be executed on a tenant’s request.
Naturally, the module should query the metadata store for each request?'.

21t should be noted that the IOStack metadata store is a distributed in-memory store that can be deployed on the Swift
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After performing the query to the metadata store, the Storlet manager may need to enforce the
execution of a certain filter on that request. To this end, based on the applicable filters to that tenant,
the Storlet manager sets the appropriate HTTP headers to the incoming request in order to trigger
the subsequent Storlet execution.

Moreover, we store data objects with an extended metadata to keep track of the filters enforced on
an object, and the execution order of filters. This is necessary to trigger inverse transformations of
filters that change the content of objects (e.g., compression, encryption).

Sandboxed filter execution: Upon the arrival of a tenant’s request with the appropriate HTTP head-
ers, a filter can then be executed on a Docker instance for that tenant. Moreover, the execution can
take place either at the proxy or storage node stages; such a decision that depends on the Storlet con-
tiguration. For instance, a compression filter can efficiently performed at the proxy, whereas compute
tasks on data objects may be more suitable at the storage node. For Static Large Objects (SLO), Stor-
lets can only be run the Storlet at the proxy node since the data of the object is disseminated into
multiple data nodes.

In the first version of IOStack filter framework for object storage, we can enforce only one filter
per tenant. That is, the Storlet framework is not yet capable of pipelining several Storlets on the same
object request. This feature is expected to be integrated in IOStack in the second year of the project.

Overall, one of the novelties of our this framework is its high flexibility. As we show next, the
IOStack filter framework can support many filter types of filters, such as data reduction, storage
optimization and general computations on data objects.

4.1.3 Available Data Management Filters in IOStack

Developing storage filters as Storlets is specially suitable for data management purposes. Next, we
describe the current filters that are already working in the object storage subsystem of IOStack.

Compression filter: Compression is, perhaps, one of the most intuitive data management filters that
one can devise. Our compression filter is developed as an Storlet and integrates various compression
engines. At the moment, our compression filter can work with gzip and 1z4 compressors, which rep-
resent distinct points in the time/compression ratio trade-off. Other compressors can be easily added
as third party libraries. Furthermore, our filter also allows to parametrize the degree of compression
level used by these compression engines (e.g., gzip-6 or gzip-9).

Spark SQL push-down filter: As we describe later on (Section 8), the SQL Spark pushdown mecha-
nism is an example of cooperation between disaggregated storage and compute clusters. In particu-
lar, it enables delegating to the storage cluster (Swift) part of Spark SQL queries. Despite the concept
of offloading SQL to the storage is general to any data type, the current implementation is specifically
tailored to work with comma separated files (CSV), which are very common in Big Data workloads.

In this sense, the “push down” functionality refers to the transparent communication between
Spark and Swift to import CSV files from the storage cluster to the compute cluster after execution
SQL statements, such as column selection and row filtering.

To make use of the SQL mechanism, there are several requirements: ii) The Spark compute cluster
is connected to a Swift object store, ii) Spark jobs of interest issue SQL queries against one or more file
in CSV format. The queries may either be issued directly by the user (in a spark-shell for instance) or
indirectly through Spark libraries such as Machine Learning libraries; iii) The IBM Storlet framework
augments the Swift object store functionality?.

The design of the SQL pushdown mechanism is logically divided into two parts: first, the modi-
fication of the Spark SQL query interpreter to implicitly offload SQL task to Swift. Second, a new Storlet
for IOStack specifically designed to efficiently process CSV files.

Regarding the modification of Spark (the compute side), we modified the Spark SQL query in-
terpreter to treat a SQL statement and identify parts of it that can be pushed-down to the storage.

proxies themselves. This yields that the cost of accessing the metadata store from a proxy’s viewpoint is low (i.e., access to
local memory).
22Gee details at https://github.com/openstack/storlets.
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This yields to change the source code of the Spark interpreter, which is itself challenging due to the
complexity of the framework. Thus, in our modified Spark SQL interpreter, a sentence like:

SELECT user_id, age FROM user_table WHERE age>18

In this simple example, the role of our Spark SQL pushdown mechanism is very important. That
is, the interpreter detects that both column selection (SELECT user_id, age)and row filtering (WHERE
age>18) are susceptible to be delegated to the storage cluster. Thus, the modified interpreter extracts
both selections and projections and propagates them as parameters to the various Spark tasks.

The SQL projections and selections propagated to the Spark tasks will be included as metadata to
the HTTP requests headers of CSV files, to import the necessary data to execute the targeted computa-
tion. Such extended metadata is the communication channel to offload SQL tasks from Spark to Swift,
and it basically dictates the functionality to be pushed down to the Storlet.

Technically, the extended metadata is formed by two parameters (possibly empty) in form of
strings which will be concatenated to the URI of the targeted object. The first one describes the
indexes of the requested columns. If empty then no column selection is to be done, that is all returned
rows will contain all the fields. The second one describes the parts of the WHERE clause of the SQL
query that can be pushed down.

Therefore, these 2 metadata parameters are propagated to all the Spark tasks so that each of them,
assuming at least one of the two strings is not empty, will modify the Swift GET request to invoke
the CSV Storlet to offload particular SQL tasks.

At the storage side, a new Storlet, namely CSVStorlet, has been implemented to intercept the
Swift GET HTTP request and implements the push down functionality set at the Swift side parameters
passed from Spark to the Storlet.

We tried to build on open source technologies to implement the pushed down functionality. Con-
cretely, We use the univocity?® open source CSV parser to process the CSV file and perform the
column projection. The same package is also used by the spark-csv project so that we align the Stor-
let code with what is done when no pushdown is done. In a similar manner we used in the CSV
storlet, parquet libraries used in Spark for evaluating the WHERE clause of the SQL query.

As we show in Section 9.4, this mechanism improve the performance of Big Data analytics by
making the storage cluster to cooperate in compute tasks. Finally, this functionality is currently
being tailored to improve the data analytics tasks of GridPocket, a IOStack use case company.

4.2 10 Bandwidth Differentiation Filter

Swift offers to the user a rich REST API to manage objects, and manages replicas (or erasure codes)
to add resilience to the system. The basic interface with applications are the GET and PUT methods
to retrieve and store objects, respectively. The user sends a GET requests to the Swift proxy and the
request is directed to any of the Object Storage nodes (randomly by default). Once the object server
has the request, an iterator is returned and offered to the user. The iterator offers to the user chunks
of data, on demand, issuing read operations to the operating system via the DiskFileReader class.

Such requests are issued by different threads (round-robin), and even if the object is still the same
(and the requests are sequential) the operating system sees them as different applications are asking
for the same file producing fairness and disabling prefetching problems.

This aspect is important for the I/ O scheduler. One of the most advanced ones, CFQ [10], includes
heuristics and different queues to manage different applications and requests, and the original Swift
behaviour breaks the optimal performance of CFQ. Although it does not have a major impact on
SSD devices due to their non-sequential performance (and non-specialized schedulers), HDD devices
suffer from a high penalty due to seek times and reduced burstiness.

421 Swift Analysis

To see what is happening on Swift, we used a SAIO [11] (All-in-One) installation that avoids a lot
of complexity and prepares a controllable environment to experiment with Swift. We modified the
configuration files to have a single object storage node, and remove all the replication and resilience

Zhttp:/ /www.univocity.com/
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Figure 6: Performance obtained using the dynamic Swift with 1 thread per each object and requesting
2,3, 4 and 8 objects with different workers values.

features to reduce I/0O interferences.

We stored a set of 5 GB files inside the object storage and started asking from different clients
simultaneously. The operating system behavior was analyzed using blktrace [12] and Paraver [13]
using a translator called blktrace2paraver [14].

With such tools we see what happens inside the system (reads, writes, merges, idle times) in a
two-dimensional view: Time in x-axis and threads in the y-axis. With Paraver we can easily track if
a single thread is asking the same objects in a sequential way, or for instance, different threads are
asking different regions without a logical rule on the same object.

Swift is configured at boot with two main parameters: The number of workers that serve each
server (TCP request level) and the number of threads per worker. The workers are created in the
WSGI [15] layer for each client request, then the request is served (I/O operations) inside the object
server using n threads.

We explored multiple clients (or tenants) requesting different objects, with different Swift param-
eters (thread / worker combinations) to see their effect on the performance and the disk behavior.
We used HDDs. We can see a summary of the results in Figure 5 with requests from 2, 3, 4 and 8
clients.

The Figure 5 has the y-axis showing the bandwidth obtained on each of the scenarios represented
by the bars on the x-axis (# Workers - # Threads) and the bars are divided in different colors to
identify the individual bandwidth obtained from each object. Bars” division helps to detect fairness
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[ REST Call Description | HTTP Method | URL
10 bandwidth info GET /bw
IO Object Servers info (ip:port, devices,
thread identifiers, oid, accounts, policies, | GET /bw/osinfo
MB/s served and MB/s asked)
Get IO bandwidth info of an account GET /bw/:account_id
Clear all the IO ban.d‘.mdth assignments for PUT Jbw/clear
all accounts and policies
C!ear all the IO bandwidth assignments en- PUT Jbw/clear/: account. id
tries for the selected account
Clear all the IO bandwidth assignments en- . R : .
tries for the selected account and policy PUT /bw/clear/:account_id/:policy_id
Assign IO bandwidth to all the policies of PUT /bw/ :account. id/ :bw_value
the selected account
Assign I.O bandwidth to the selected account PUT Jbw/ s account_id/:policy_id/ :bw_value
and policy
Table 4.2a: SDS Controller API for 10 bandwidth differentiation filter.
[ oAuth PARAMETER [ Description |
[ X-Auth-Token [ Admin token obtained after a sucessful authentication in keystone. |
Table 4.2b: Header to authenticate bandwidth differentiation filter API calls.
anomalies.

From the Figure 5 we can observe the relation number of objects requested - number of workers, if
the number of workers is lower than the simultaneous objects requested, the performance is severely
affected. It does not help to increase the number of threads, as we can see on the 1 worker - 64
threads scenario. The worker parameter is shaping the performance values more than the number of
threads but both are important. An interesting value is observed using 1, 2 and 3 workers with three
simultaneous objects: with 1 worker we get a fair allocation (but bad performance) for each object,
but with 2 workers the scenario is totally unfair: we obtain the 50% of the performance for one single
object and the 50% for the two other objects. This is due to that 1 worker is serving only one object
and the other worker is serving with round-robin the remaining two objects. A similar behaviour is
observed at the 8 clients scenario with 3 workers, and again, increasing the number of threads does
not show any improvement (it decreases the bandwidth obtained).

This behavior produces an undesired performance impact and fairness loss in the CFQ I/O sched-
uler. This behavior is also observed on other environments as KVM virtual machines. On KVM, the
I/0 requests are sent to the kernel using a threadpool of 64 threads, in a round-robin fashion. This
produces the activation of false cooperative threads in the I/O scheduler, and only a data stream is
served, the other ones are waiting until there is an idle period or the chosen data stream finishes.
This I/O scheduler behavior produces starvation as we are loosing some semantics and metadata
included on the I/O requests like the originating PID inside the VM machine (guest). Having such
disorder creates unnecessary overhead inside the kernel.

4.2.2 Changing the threading model

From the previous results, we observed that having 1 worker per object offers the better performance.
The CFQ scheduler also works better as the requests follow the rule one stream - one PID and being
more bursty increases the performance of HDDs.

Our next action is try to get this model dynamic, so to be able to fix a data stream into a thread,
we decided to change the threading model (initially a pool of threads) to a dynamic-threading model
fixing 1 thread to 1 stream (or object). Although it may seem that it will impact performance, as we
are always creating and destroying threads. It is not as important as on other applications, as we are
ending into a storage device and the overhead is removed once we pass through the different layers.
However, other threading models can also be implemented if needed, for example a fixed threadpool
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"127.0.0.1:6010": {
"sdb1l": {
"0": {"account": "AUTH_test", "identifier": "object", "needed_BW": 10, "policy": "silver", "objects": [
{"oid": "/AUTH_test/FilesSilver/filelG2.dat", "oid_calculated_BW": 5.835894944734798,
"range": "O-end"},
{"oid": "/AUTH_test/FilesSilver/filelG3.dat", "oid_calculated_BW": 4.730541865223458,
"range": "O-end"}
11,
"1": {"account": "AUTH_test2", "identifier": "object", "needed BW": 25, "policy": "silver", "objects":
{"oid": "/AUTH_test2/FilesSilver/filelG3.dat", "oid_calculated_BW": 28.807570522146083,
"range": "0-512000"}
1}
}
1,
"127.0.0.1:6020": {
"sdb2": {
"0": {"account": "AUTH_test", "identifier": "object", "needed_BW": 20, "policy": "gold", "objects": [
{"oid": "/AUTH_test/Files/filelG.dat", "oid_calculated_BW": 19.330390515058488,
"range": "O-end"},
11,
"1": {"account": "AUTH_test2", "identifier": "object", "needed BW": 25, "policy": "silver", "objects":
{"oid": "/AUTH_test2/FilesSilver/filelG.dat", "oid_calculated_BW": 13.02260571792931,
"range": "O-end"}
{"oid": "/AUTH_test2/FilesSilver/filelG2.dat", "oid_calculated_BW": 10.476129811035005
"range": "102400-end"}
1}

Figure 7: Example JSON /bw /osinfo response

model with stream id labels.

Our implementation uses a hash created by the object id as the identifier of the thread. As Swift
is stateless we have several issues, for example, we do not know when the object is not going to be
used again. To solve it, we setup a deadline of 10 seconds to clear any used thread and free it. No
major changes are done to the code more than changing the ThreadPool class used and setting 0 as
initial parameter for the number of threads.

Although we have some performance changes, the most important benefits are a removal of the
two configuration parameters (workers and threads) and the result of a improved fairness on all the
scenarios. The workers parameter can be removed as we ensure that each object is going to be server
by a thread in a asynchronous way, so the worker will be ready to serve another request immediately.
This may have an impact on different workloads, however using several benchmarks, for example,
COSBench [16] we could not detect any issue on setting the number of Swift workers to 1 with the
new threading model, so the modification also simplifies administrators” tasks.

As we can see on Figure 6 all the scenarios show a fair sharing of resources between clients.

4.2.3 Bandwidth differentiation implementation

Thanks to the new threading model we can track each stream of data at the object server. We can
apply several policies that are unavailable using the original thread pool model. For example, we
can apply directly I/O priorities [17] to create bandwidth differentiation policies. Although it is true
that we can also have bandwidth differentiation on other middleware layers, but we can only share
spare disk bandwidth when we use kernel I/O priorities. The kernel sets the priority of the I/O
requests using the PID, so that in order to use it, we need to keep it fixed.

The Operating Systems offers several mechanisms to classify the I/O requests, one of such mech-
anism is the IO Priority. On the last Linux kernels we have 3 classes: Idle, Best Effort, Real Time. Best
Effort, has 8 priority levels (0 maximum, 7 minimum). IO Priority is rarely used, but we tried to use
such mechanism to differentiate, important requests (Requests that need to be served because we
need the bandwidth) and non-important requests (Requests that can be delayed as the stream is well
served in the bandwidth metric).
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Using such priority component simplifies the mechanism as we can avoid using delays in the
code. We are using only BestEffort 0 and IDLE priorities. Other sharing policies, for example gold-
silver-bronze clients, can be implemented using more levels.

With all those modifications, we have speed improvements in HDDs devices (due I/O scheduler
can do a better work). We have also checked the effect of those modifications on SSD devices, but as
there is no specific I/O scheduler for SSDs there are no benefits on performance.

In order to ensure the needed bandwidth for a tenant we may need to select the Object Store nodes
that are underused, that is to provide to the proxy server the instantaneous bandwidth of the object
store disks.

To provide this information we use an external process generating such information each second,
and a Swift middleware, similar to healthcheck, that provides an URL inside the object server provid-
ing the needed information of all the devices inside the Object Server. Such information is obtained
when a sorted list of nodes is needed, being able to sort the node list per bandwidth used and to dis-
tribute the request to different Object Servers. This information is also used to provide time statistics
about the usage of each disk in a Object Server.

424 API

All the calls of the SDS Controller API for IO bandwidth differentiation filter (Table 4.2a) must be
authenticated as admin, so after successfully receiving the credentials from keystone, it is necessary
to add a header (Table 4.2b) with the obtained token to all the bandwidth differentiation filter calls.
This SDS Controller API directly connects to a similar API in the Swift’s proxy that sends and collects
the information from all the Object Servers

All the GET calls return the information gathered using a JSON format. As we can see in Figure 7
example of a /bw/osinfo response there is a lot of information about objects and about the object
servers that are serving them at that moment.

4.2.5 Relation with other components

In order to provide the proxy the bandwidth assignments to each tenant, we will store this meta-data
into a Redis?* database in the SDS Controller. We left aside the traditional database to store meta-data
as the meta-data workload will be read-only, Redis provides a lot of flexibility to store objects that
represent the different meta-data and is much easier to scale.

So, when a bandwidth assignment call arrives to the SDS Controller, it directly connects to a sim-
ilar API in the Swift’s proxy. Then, the proxy notifies all the Object Servers about the new bandwidth
assignment and it will be stored in memory. After that, the proxy will also update the bandwidth
information about that tenant in the SDS Controller’s Redis database, where it will be automatically
available for future reference.

5 Block Storage in IOStack

In IOStack, the automated provisioning of SDS for block volumes is the second pillar of the architec-
ture (see Deliverable 3.1 for more details). Similarly to the object storage architecture, IOStack offers a
SDS controller managed via REST APIs to orchestrate traditional block storage back-ends (e.g., stor-
age arrays). Currently, the IOStack block storage architecture provides administrators with two main
services: i) volume provisioning and ii) storage filters. In what follows, we describe the architecture and
high-level operation of the block storage subsystem in IOStack.

5.1 Architecture and Services

In Fig. 8, we illustrate the architecture of IOStack for block storage. Concretely, the figure shows
IOStack components overlaid with MPStor specific components. The combination of these compo-
nents constitute the SDS block storage subsystem.

At the high-level, we can differentiate 3 main layers in the IOStack block storage architecture.
First, we find the SDS Controller, which accepts the requests from administrators via a REST API
service to orchestrate the SDS layer (volume provisioning, filters). Second, we find the client-side

Hpttps://redis.io
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components of the block storage architecture (Konnector, VSD). This part of the architecture enables the
interception of data flows between client VMs and block volumes mapped at the storage back-end.
This client-side part of the IOStack block storage architecture is the basis for our filter framework,
as we can intercept IOs between client VMs and storage arrays and apply arbitrary transformations
or control to them. Finally, IOStack provides server-side components (MPStor Orkestra) to discover
and orchestrate. This makes it possible for the SDS Controller to automate the provisioning of block
volumes with performance-specific storage fabrics.

To better understand the block storage architecture of IOStack let us describe the components that
can be found in a standard deployment:
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VM1
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s () \
WRITE (7o SDS Controller (2 )
SEIGE e

Guest 0§

| 00 )
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Filter Control API
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Figure 8: Architecture of the block storage framework. In particular, the Storage API clients at the
VM (Hypervisor) enables the SDS Controller to coordinate them via simple HTTP requests. The
SDS Controller also coordinates the block storage filter framework, which is located at the export
termination of the block volume (Konnector). Moreover, the SDS Controller can coordinate several
(e.g., storage arrays) via a server-side API module.

SDS REST API - #1. The REST API head allows a datacenter administrator to provision storage
from a storage provider and attach that storage to a storage consumer node and build a filter stack
between the attached storage and the storage application. The code for providing the REST APl is a
standalone application with direct access to the SDS metadata store to persist the result of changes in
the SDS layer.

The SDS REST API for block storage is built as a library to communicate with the SDS controller,
JSON commands with the Konnector layer on compute nodes and socket-based XML communication
with Orkestra SAN storage nodes. The top level architecture of the REST API is shown in Fig. 9.

SDS Controller - #2. The SDS controller is an entity that builds a model of the storage provider,
understands the management semantics of one or more storage providers. In practice, the IOStack
SDS Controller integrates the block storage REST API, which is exposed to the administrator via the
IOStack dashboard.

Storage back-end - #3. The storage provider is typically a proprietary storage array that has its own
proprietary storage API or uses an industry standard such as SMI-S.

Storage Area Network (SAN) - #4. The SAN is a storage area network over which storage volumes
are exported from the storage provider and attached to the storage consumer node.

Konnector - #5. The Konnector is an in-band component on the client node that homes the consumer
application (e.g Virtual Machines). The role of Konnector is to terminate the storage array export (see
(#5) in Fig. 8). Moreover, the Konnector creates a service stack or a set of storage filters by presenting
the storage array export to the VM through the Virtual Storage Device (VSD). The Konnector layer
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presents an API to the SDS controller, the SDS controller uses this API to create VSD devices. Drawing
an analogy with IOFlow [1], the Konnector represents a stage, it is a point to enforce policies on data
flows and it is orchestrated by the SDS Controller.

Volume Termination/Export - #6. The Termination layer allows the storage provider volumes to be
terminated on the consumer node. This is a complex process as it requires setting up an end to end
SAN connection between the consumer and provider.

Virtual Storage Device (VSD) - #7. The Virtual Storage Device (VSD) is the volume that sits on top
of the service stack and is used by the application layer.

Filter Framework - #8. The service stack is a set of block storage volume functions, including filters
which provide in-line data transformation functions.

Block volume - #9. The storage volume from the storage provider.
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Figure 9: Architecture of the SDS REST API service for block storage.

5.2 Provisioning of Volumes

From the block storage perspective, IOStack is a framework that sits on top of traditional storage,
and takes care of automating storage provisioning. Storage provisioning automation matches storage
consumers with storage providers taking into consideration storage policies.

An example of a storage policy might be the definition of a media (storage) tier that has con-
crete resiliency, performance (in BW and IOPs) and fabric type requirements. Storage provisioning
automation matches a consumer asking for a media storage with providers that fulfill the require-
ments of that tier. There are SDS tools in place to define both the policies as well as the metadata that
describes the provided storage characteristics (e.g. Resiliency, BW).

To achieve this goal, the IOStack REST API service and the server-side modules on top of storage
arrays enables the SDS Controller to discover the underlying storage fabrics and enforce performance
defined volume provisioning (see Deliverable 3.1 for technical details). Moreover, the provisioning
of volumes is greatly simplified thanks to the visualization of available resources at the IOStack
dashboard.
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5.3 Filter Framework for Block Storage

A Fundamental requirement from the block storage layer in the IOStack architecture is the ability to
dynamically deploy filters within the data flow. Block storage code is typically high performance,
well optimized code that runs in the system’s kernel. Dynamically deploying filters into such code is
a challenge. The technique adopted to address the challenge is to route the IOFlow from the kernel
space into a user space where it can be directed easily to a run time deployed filter.

Filter Sandbox. A filter framework Sandbox testbed has been created on a Fedora virtual machine
which acts as a development platform and demonstration platform. This framework is composed
of Konnector which provides a JSON interface for control, a set of user developed filters (which
are dynamically linked .so files) and standard Linux components. The sandbox environment was
developed for demonstration and development purposes. The environment consists of an MPSTOR
Openstack distribution packaged with the following VMS:

¢ UBUNTU VM with the REST API Application
¢ FEDORA VM with Konnector and Filter Management

* Orkestra Virtual Storage Array

The entire environment is virtualized; this reduces the number of physical machines required for
the testbed. As shown in Fig. 10, this environment allows the development and demonstration of
the REST API (1) provisioning storage from the Virtual Storage Array (3) which has attached virtual
disks on which RAIDs are built, attaching the storage array volume (5) to the Fedora VM (2).

UBUNTU Fedora VM Orkestra
VM +Rest + +Konnector r Storage Array |«
Rest App VM

OpenStack Flat Network % °

Figure 10: Sandbox of the SDS block storage framework provided for development purposes.

Filtered Block Storage Example. Fig. 11 (left) below shows the components of the Filter framework.

* SDS REST AP providing an interface to the provisioning application.

e Konnector, this is the in-band control element on the consumer node, Konnector’s API allows
control of the termination of storage array volumes and the creation of the service stack and
filters.

* The SDS controller plug-in (3rd party) which sends storage array specific commands to storage
array. This service can run anywhere, for convenience its running on the Fedora sandbox VM.

* This is the terminated "back end" storage volume provisioned from the storage array.

e This is the Filter manager which is responsible for building the service and filter stack on top
of the “back end” storage.
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¢ These are the control functions that call the filter entry points with the in-band data from the
user to the storage devices.

¢ User Application IO (Read /Write DATA)

¢ The SAN storage device.
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Figure 11: Architecture diagram of our VM sandbox containing the filter framework for block storage
(left). On the right, we applied 3 filter to a data flow related to a block volume (NOP, XOR and BITREV).

Filter testing results. Although a more extensive validation of the filter framework for block storage
is provided in Section 9.4, as a proof of concept the filter framework was tested for the following
filters:

* NOP filter: This filter simply intercepted the IOs between an application and the back-end stor-
age device, it simply logged the IOs to demonstrate the filtering could be achieved in data flow.

* XOR filter: this filter implemented the following function data=data XOR key, the input flow
was clear data, the data sent to the storage device was xor’ed with key. The data read from disk
was obfuscated by the XOR function, however the data to the application was clear data.

* BITREYV filter: This filter reversed the bit order of the data.

The filters were tested singly but also cascaded, the effect was to apply each function to the data
flow during writes and the reverse order during reads. Data read through the application was correct,
data stored on the back-end device has the NOP, XOR and BITREV operations performed on it. As we
can observe, Fig. 11 (right) shows a dump of the data from the filter device and the back-end storage,
we can clearly see the written user data on the disk is the function data=data XOR 0x55. This proves
that the filters have been enforced through the write path from the volume export to the back-end
storage.

In what follows, we describe a common mechanism for both object and block storage subsystems
to define dynamic storage policies; that is, storage policies that are enforced depending on specific
workload conditions.

6 Dynamic Storage Policies

In previous sections, we described the elements that enable an administrator to enforce a filter on a
tenant’s requests, by making use of the Storage API via the SDS Controller front-end. However, a
key feature of SDS is the ability of enforcing filters automatically based on the workload exhibited
by tenants. We believe it necessary to devise new models to provide dynamic storage provisioning
in IOStack.

Page 21 of 48



H2020-ICT-2014-7-1 STREP
30/06/2015 IOStack

6.1 Architecture and Lifecycle

One of the distinctive points of the IOStack architecture is the ability of setting policies that may
dynamically enforce storage filters, depending on live workload-based decisions. Moreover, a dat-
acenter administrator is abstracted from the complexity of dynamic filter enforcement thanks to an
intuitive, high-level DSL. In this section, prior delving into technical details, we overview the process
of defining and deploying a storage policies in IOStack (see Fig. 12).

. SDS Metadata Store
1) Write SDS Controller Dashboard Storage System

Policy
T1 -> Compression
| FOR T1 WHEN Throughput < SMBps DO SET Compression DSL

|

‘Workload metrics & filter metadata
- oo

2) Syntax Checker 5) Trigger Filter
a8

(Throughput < SMBps )

1
]
i

SDS Storage API

3) Policy Compilation

1 [ \
4) Deploy Policy :__j —_— E__j O @Em |
[T

D O Storage Monitoring Service

Policy Actors ~ Workload Metrics

Figure 12: Policy definition, compilation and deployment lifecycle. When a policy implementation
is deployed as an isolated process, it checks the appropriate workload metrics to evaluate if the
condition clause is satisfied. In the affirmative case, the policy process enforces a new filter.

First, the SDS Controller offers to the administrator the possibility of writing storage policies in the
front-end dashboard. These policies, enable the enforcement of storage filters to targets (e.g., tenants,
containers/volumes) under certain workload conditions. To better understand this, let’s see a simple
example:

FOR T1 WHEN Throughput < 10MBps DO SET Compression

The previous policy defines a condition that, in case of being satisfied at any moment in time
(Throughput < 10MBps) , will trigger the enforcement of a storage filter (Compression) on T1’s re-
quests. We will describe in depth the syntax of policies in Section 6.2.

Given that policy definition, the IOStack DSL framework should verify that the expressions that it
contains are syntactically correct according to the DSL grammar. Furthermore, to consider a storage
policy syntactically correct, the compiler should also verify that the workload metrics (Section 6.5) and
filters referenced in the policy do exist. In particular, workload metrics are processes (or actors>) that
consume monitoring information from the storage system to provide a useful metric to define new
policies (e.g., Throughput). As explained before, filters are the actual transformations executed on
data flows (e.g., Compression). Both, workload metrics and filters should be registered in the DSL
Registry (see Section 6.3), so that the DSL compiler could verify its existence.

If a policy definition is syntactically correct, it is compiled into a code file and instantiated as an
actor. The policy actor is then subscribed to one or more workload metrics, depending on the conditions
specified in the policy definition. Automatically, the policy actor will process incoming workload
metric values to evaluate whether the policy condition is satisfied or not (e.g., Throughput < 10MBps).
If a policy’s condition is satisfied by the workload at hand, the policy actor will automatically call the
SDS Controller API in order to enforce a filter to the appropriate target, and persist that decision in
the IOStack metadata store. This part of the lifecycle is described in Section 6.4.

Bhttps://en.wikipedia.org/wiki/Actor_model
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As we describe in Section 4, from that point onwards the filter framework will acknowledge that
a compression filter should be enforced on T1’s requests. Note that during this process, the only
intervention of the datacenter administrator with IOStack is on the policy definition; the rest of the
process is automatically carried out by the SDS system.

As one can infer, this novel approach of defining SDS storage services opens multiple possibilities
of management and optimization. In the following, we describe more extensively all the mentioned
steps in the definition and deployment of storage policies in IOStack.

6.2 I0Stack DSL for Policies

IOStack provides a simple and extensible domain-specific language (DSL) to enable administrators
defining storage policies. In this section, we depict the structure of storage policies, as well as the
current capabilities of the syntax, which are expected to grow in the future.

Condition

A
[ \

FOR T1 WHEN Throughput < 10MBps AND Compressibility > 2 PO SET Compression WITH Param1=gzip PERSISTEN'I}'

!
Target Action

Figure 13: Description of the clauses constituting a storage policy.

Targets. The target of a policy represents the recipient a policy’s action (e.g., filter enforcement) and
it is mandatory to specify it on every policy definition. In our DSL design, targets can be tenants,
containers/volumes or even individual data objects. In our view, the hierarchical granularity of targets
enables high flexibility from an administration viewpoint.

Moreover, a policy’s target can be a single entity or a group of them. To this end, the current
version of the DSL syntax enables defining target groups. For instance, we can define a group such
as G1:{T1, T2, T3} and use G1 as a target in the policy definition (see Table 6.3a). Internally, during
compilation process the system will generate individual policy actors for each tenant. Note that we
include in the syntax the keyword ALL followed by the type of target (TENANT, CONTAINER, OBJECT) to
refer all elements of a target type. We expect to provide advanced grouping capabilities in our DSL
to ease the management of a potentially large number of targets.

An obvious consequence of this design is that more than one filter may be enforced for the same request
depending on the policy’s target. That is, an administrator may define a policy at the tenant scope, and
another one for a certain data object of that tenant, which behaves in a particular way.

In this situation, we apply the filter to an object request with the most specific target granularity.
Therefore, filters enforced at the data object have priority over filters defined at the container/volume
target granularity, and analogously, filters defined at the container/volume will be executed instead
of filters defined at the tenant granularity. This model has been traditionally applied in object ori-
ented programming (OOP) under the name of dynamic dispatch?.

The previous situation differs from that of applying more than one filter to a certain target. If an
administrator wants to enforce more than one filter, he/she should specify more than one filter in the
action clause, as we describe next.

Conditions. A central part of a policy definition is the condition. A policy may have one or more
condition clauses that specify the situation that will trigger the enforcement of a certain filter on the
target. In general, condition clauses consists of workload metrics, operands and values.

The first member of each condition clause refers to a workload metric. As we will see later on,
workload metrics processes compute values that represent a specific aspect of the current storage
workload. Also, to be able of using a workload metric in a policy condition, it should be registered
in the DSL Registry (Section 6.3). By registering the available workload metrics, it is possible for

2ohttps://en.wikipedia.org/wiki/Dynamic_dispatch
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the DSL system to obtain the necessary information for the compilation and deployment phases of a
policy.

Second, our DSL provides administrators with internal and external operands on condition clauses.
Internal operands are the elements within a condition clauses that dictate the type of comparison to
be done against the metric produces. For instance, common internal operands are “greater-than”
(>), “lower-than” (<) and “equals” (=). Moreover, an administrator can define complex multi-clause
conditions by making use of external operands, like AND and OR.

Finally, the condition clauses evaluate the workload metric values (dynamic) against the value
defined by the administrator as a threshold to trigger the action. Clearly, the value defined by the
administrator in a condition clause depends on the values produced by the workload metric at hand;
this encompasses the use of absolute units (e.g., 10MBps) or fractions/percentages.

Actions. The action of a policy definition represents what should be done after the condition eval-
uates true. Normally, the action refers to in order to add the enforcement of a filter via the SDS
Controller API. Therefore, the main goal of our storage policy framework is to enable automatic
enforcement of filters once the workload-based condition defined in a policy is satisfied.

In the current version, the action clause of a policy makes it possible to enforce (SET) or to remove
(DELETE) a filter from a target. That is, both types of actions are useful, considering targets that by
default may have filters enforced or not. Similarly, at the end of the action clause we can define the
behavior of actions. On the one hand, we consider persistent actions those ones that once are triggered
the filter enforcement remains indefinitely (keyword PERSISTENT). On the other hand, our framework
also enables actions to enforce a filter only during the period where a condition is satisfied, rolling
back the action if the workload does not satisfies the condition in the future (keyword TRANSIENT).
This is specially important if we take into consideration the behavior of filters: there are permanent
transformations on data (e.g., compression, encryption) and non-permanent ones (e.g., IO bandwidth
differentiation, caching).

Moreover, filters defined in the action clause of a policy may be parametrized. As we describe in
our filter framework (Section 4), the internal operation of a filter may provide an external interface
to tune its behavior. For instance, retaking the example of a compression filter, we may decide to
enforce compression using a gzip or an 1z4 engine, and even to decide the compression level of
these engines. For this reason, in the action clause we enable the addition of key/value pairs that
will be passed as input parameters to the the filter to be triggered by the policy.

Our DSL already supports the definition of more than one filter in the action clause. That its,
the action clause can be defined as follows: DO SET Compression WITH Paraml=gzip PERSISTENT,
Caching Parami=LRU TRANSIENT. However, the actual execution of this policy requires the ability of
pipelining several filters in data stream. This feature is not yet available in the current version of our
filter framework, but it is planned for the second year of the project.

Naturally, the IOStack DSL system requires information about workload metrics and filters, such
as the network location of the former and the type of parameters accepted by the latter, among other
aspects. Next, we describe a part of the IOStack metadata system (DSL Registry) intended to storage
the necessary meta-information of both workload metrics and filters to be used by storage policies.

6.3 I0Stack DSL Registry

The I0Stack DSL Registry is a key element to abstract administrators from the technical complexity
of low-level aspects involved in our DSL policy framework, such as inter-process communication
and syntax checking. The objective of the DSL Registry is to make it possible for an administrator to
use simple keywords, such as Throughput or Compression, in the definition of storage policies. To
this end, the DSL Registry stores the metadata of workload metrics and filters.

For each workload metric, the DSL Registry needs to store its name, network location and metric type.
The name of a workload metric is the keyword to be used in condition clauses of storage policy
definitions. Workload metric names should be unique and self-descriptive to ease the design of
storage policies. As workload metrics are independent processes that consume workload monitoring
information, which yields that various metrics may be executed on one or more machines. This
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[ REST Call Description | HTTP Method [ URL |
Add a workload metric POST /registry/metrics
Get all workload metrics GET /registry/metrics
Update a workload metric PUT /registry/metrics/:metric_id
Get workload metric metadata GET /registry/metrics/:metric_id
Delete a workload metric DELETE /registry/metrics/:metric_id
Add a filter POST /registry/filters
Get all filters GET /registry/filters
Update a filter PUT /registry/filters/:filter_id
Get filter metadata GET /registry/filters/:filter_id
Delete a filter DELETE /registry/filters/:filter_id
Add a tenant group POST /registry/gtenants
Get all tenant groups GET /registry/gtenants
Add a member to a tenant group PUT /registry/gtenants/:gteanant_id
Get all tenants of a group GET /registry/gtenants/:gteanant_id
Delete a tenant group DELETE /registry/gtenants/:gteanant_id
Delete a member of a tenant group | DELETE /registry/gtenants/:gteanant_id/tenants/:tenant_id

Table 6.3a: SDS Controller API of the DSL Registry.

requires the metadata information of a workload metric to provide the network location to reach the
process and obtain the computed metric. Moreover, a workload metric’s metadata should define the
type of metric produces, such a integer or a boolean, to enable the DSL syntax checker to infer if
values in condition clauses belong to the appropriate type.

In the DSL Registry, all filters should provide the following metadata: name, identifier, activation
URL and valid parameters. Analogously that for workload metrics, filters should be identified in the
DSL Registry with a unique and self-explanatory name in order to be used in policy definitions. The
identifier field is only required by out filter framework for object storage based on Storlets (Section 4).
To wit, as our framework is capable of executing a variety of filters, we should provide the identifier
of the filter to be executed.

Moreover, as different filter types may have distinct calls from the SDS Controller API viewpoint,
we need to provide the base URL to be used to trigger the filter activation. The base activation URL
stored in the DSL Registry will be completed on compilation time by adding in the parameters and
values defined in the policy. By doing this, the resulting policy actor will only need to send an HTTP
request to the SDS Controller API using that URL to trigger the appropriate action. In this sense, all
filters in the DSL Registry should specify in their metadata the parameters are valid (if any) as well
as their type (e.g., float, boolean). As in the case of workload metrics, this information will be used
by our DSL framework during the syntax checking phase.

The IOStack DSL framework enables to deploy and register new workload metrics and filters in
the system while running. However, adding a new workload metric or filter requires the adminis-
trator to introduce the associated metadata in the registry. This task is carried out making use of the
SDS Controller API calls related to the DSL Registry (see Table 6.3a).

With the appropriate information in the DSL Registry, the DSL policy framework is able to parse
and compile a policy definition into a process that communicates with workload metric processes and
triggers the enforcement of filters. We describe the compilation and deployment process of policies
in the next section.

6.4 Checking, Compiling and Deploying Policy Actors

When the administrator defines a storage policy in IOStack, the system should check whether the
policy is syntactically correct or not, according to the IOStack DSL grammar. In the affirmative case,
the definition of a policy is compiled into a code file and instantiated as a independent process or
actor to run in the appropriate machine within the system. Once the policy actor starts, it subscribes
to the necessary workload metrics in order to evaluate the workload related to its target, and trigger
the action if necessary. We explain the phases of this process more technically as follows.

Syntax checking: The IOStack DSL grammar previously described is implemented using PyParsing,
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Figure 14: Sequence diagram that shows the interactions among workload metrics, policy actors and
the SDS Controller APL

the most popular DSL for Python.?” Once a policy definition is submitted for syntax checking, a DSL
parser module validates the input policy definition. Note that during the syntax checking process, the
DSL parser should also contact the DSL Registry in order to infer whether the references to workload
metrics and filters are correct or not. This includes, for instance, to check if the workload metric or
filter has been registered, to infer if the workload values to be compared in condition clauses are of the
correct type, or to verify if the parameters passed to a filter are appropriate. In case of a syntactically
incorrect policy definition, the system returns a human-friendly error message to the administrator,
so that the policy definition can be fixed in subsequent trials.

Policy Compilation: When a submitted policy is found to be syntactically correct, the system starts
the compilation phase. As a basis for the compilation process, our DSL framework provides a policy
implementation template or skeleton. Such a template includes the basic logic that any policy imple-
mentation will execute. Specifically, the policy implementation template contains the logic i) for
subscribing to one or more workload metrics, ii) to check the workload metrics values for evaluating
if the policy condition is satisfied and iii) to send the request to the SDS Controller API for enforcing
a filter. During the compilation phase, the internal attributes of the template are overwritten with the
appropriate information from the policy definition.

Policy Deployment: Once the compilation phase ends, the system instantiates a new policy process
or actor based on the resulting modified policy implementation template. In the initialization phase
of the policy actor it is subscribed to the appropriate workload metrics. From that point onwards,
the policy actor enters in the execution phase, which consists of evaluating if the received workload
metric values satisfy the policy condition or not, in order to enforce a filter.

6.5 Workload Metrics and Policy Actors: Interactions

In IOStack, both workload metrics and compiled policies are independent processes or actors based
on our PyActive [18] actor and communication middleware?8. PyActive enables our DSL framework
to execute policy processes on one or many physical machines, co-located or not with workload
metrics. Moreover, inter-process communication is transparent to the system, thanks to the com-
munication primitives of PyActive. The actor model perfectly suits our DSL framework for two
main reasons: 1) We need isolated execution of both metrics and policy actors, and ii) these processes
should be capable of running in a distributed setting for scalability reasons.

The relationship between workload metrics and policy actors is modeled following the observer

2’http://pyparsing.wikispaces.com/
Zhttps://github.com/cloudspaces/pyactive

Page 26 of 48


http://pyparsing.wikispaces.com/
https://github.com/cloudspaces/pyactive

H2020-ICT-2014-7-1 STREP
30/06/2015 IOStack

design pattern®. On the one hand, workload metrics are observable entities, as they produce informa-
tion that is of interest for other entities. On the other hand, policy actors are observers since they are
subscribed to one or more observables based on their interests (i.e., workload metrics to be evaluated
on condition clauses).

Fig. 14 shows how actors interact in our DSL framework. First, when a policy is deployed and ini-
tialized, it attempts to subscribe to all the workload metrics that are references in its condition clauses.
This is done by calling the remote method subscribe(self, target_granularity, target_id) of
each workload metric actor. As we mentioned, the inter-process communication is greatly simplified
thanks to the use of remote invocation primitives of PyActive. Upon a subscription, the workload
metric actor adds the reference of the subscriber (policy actor) into its internal list of subscribers. The
reference (self) is needed to notify subscribers via push of new workload metric values.

Concurrently, workload metrics process monitoring events from the storage monitoring system.
When a new value of the metric value is calculated (e.g., every 5 seconds), the workload metric actor
calls the notify_all () method, which yields sending the new calculated value to all the subscribers.

In this sense, it is worth mentioning that the subscribe () method has two additional parameters:
target_granularity and target_id). These parameters identify the target which pertains to this
policy, and therefore, constitute the subscription for this policy actor. To put an example, let us
imagine that the Throughput workload metric calculates the number of MBps that every tenant is
writing/reading in the system, every 5 seconds. Then, a new policy actor sends a subscribe(self,
tenant, T1) request to the Throughput workload metric. When the Throughput workload metric
calculates the throughput values for the active tenants, it will only notify the new policy actor in the
case that there is a throughput metric value related to T1. Otherwise, the policy actor for T1 will not
receive any message, as it is only interested on the throughput of T1.

Once the new metric value is received by the policy actor, it evaluates whether the policy condi-
tion is satisfied or not. In the affirmative case, the policy actor executes the send_request () method
using the activation URL. The activation URL points to the appropriate call of the SDS Controller API
with the necessary parameters in order to start the enforcement of a filter on a specific target.

At this point, we described in detail how policies can be defined, compiled and deployed in
IOStack. Moreover, during their execution, dynamic storage policies trigger a filter (or a set of filters)
based on a live workload-based decision. Therefore, leveraging dynamic storage policies requires
a storage monitoring system that provides information about the existing workloads. The IOStack
storage monitoring system is described next.

7 Storage Monitoring in IOStack

IOStack is designed to provide dynamic storage policies that access live information of any aspect of
the workload supported by the storage system. Clearly, this requires a high-performance, scalable
and flexible approach of collecting monitoring information.

To this end, IOStack advocates for a Message Oriented Middleware (MOM) to capture monitoring
information of the storage system [3]. Concretely, we resort to CollectD* in order to send monitoring
information to a RabbitMQ message broker>!. On the one hand, RabbitMQ is known to provide high-
performance event processing service, which may be scaled-out with multiple parallel instances.
On the other hand, CollectD is a standard tool to collect monitoring information in cloud systems,
including Cinder and Swift. This has an important advantage: our storage monitoring system unifies
both block and object storage systems.

The architecture of our storage monitoring system can be observed in Fig. 15. As shown in Fig.
15, storage nodes (Swift, Cinder) send monitoring information in form of events to the MOM broker.
To provide a clear organization of monitoring events, we instantiate a queue per input metric type. That
is, all the events related to the IO transfers of storage nodes will be inserted into one queue, whereas
events related to the storage capacity of storage nodes will belong to another queue. By doing this,

Phttps://en.wikipedia.org/wiki/Observer_pattern
Ohttps://www.collectd.org
Slhttps://wuw.rabbitmg.com
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Figure 15: Centralized monitoring system for block and object storage via a Message-Oriented Mid-
dleware (RabbitMQ).

we ease the consumption of monitoring events from the viewpoint of workload metric processes. In
the case that multiple workload metric processes are interested in a single monitoring metric, we can
make use of RabbitMQ fan outs to replicate monitoring events to individual workload metric queues.
In fact, multiple strategies of event organizations are possible with RabbitMQ?2.

By default, CollectD provides interesting information about the physical usage of the storage
system, including the IO capacity or the current CPU state of a storage node, to name a few.

Apart from information about the physical resource utilization, by following the guidelines of
the CollectD plug-in framework, we can generate monitoring information concerning the OpenStack
service at hand (e.g., Swift, Cinder). That is, we integrated a plug-in that parses and converts log
information of OpenStack services into events that are injected in RabbitMQ. Thus, we are capable
of extracting workload metrics related to the logical viewpoint of the service, such as the read /write
throughput (i.e., MBps) of a tenant within a time interval, or the number of read/write operations
performed by a tenant. This approach represents a more accurate notion of the workload supported
by the service and enables us to track and analyze the activity of tenants and enforce the appropriate
filters on them.

Moreover, we can generate and inject arbitrary types of monitoring events to the system, for their
further exploitation by different types of dynamic policies. To better understand this, let us draw
an example. CollectD does not provide information about the content of object request, which may
be of great interest for some types of filters. For instance, let us imagine that we could monitor the
compressibility of data objects that are transferred to/from the system. This would enable us to write a
policy that triggers a compression filter automatically, based on the contents of files:

FOR T1 WHEN Compressibility > 2 DO SET Compression

Such kind of policies can be achieved in IOStack by introducing processes than generate the de-
sired metrics and inject them in CollectD. We already demonstrated this feature by providing one of
such custom metrics regarding the IO bandwidth exhibited by tenants, containers and objects (see Sec-
tion 4.2). However, state-of-the-art open source cloud storage systems are very far from this degree of
flexibility and automation. Furthermore, understanding the potential of the different combinations
of filters and monitoring metrics that IOStack can accommodate deserves important research efforts
within the project, specially considering disparate multi-tenant workloads.

It is important to understand the degree of dependence between the resolution of monitoring information
and the definition of dynamic storage policies. That is, if every monitoring information event is related
to the tenant, container/volume and data object, workload metric processes can enable triggering
policies also at the tenant, container/volume and data object granularity. Otherwise, if monitoring
events are only defined at the tenant granularity, we can only define storage policies at the tenant
granularity as well. Therefore, we should provide the maximum degree of precision related to the

32https://www.rabbitmq.com/tutorials/tutorial-three-python.html
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storage monitoring, since it will be reflected on the target granularity of dynamic policy definitions
(see Section 6.2).

Finally, it is worth mentioning that IOStack can persistently store monitoring information for
further analysis in order to enhance a filter’s operation. Next, we describe the monitoring framework
that enables real time monitoring in the compute cluster, as well as cross-layer strategies to cooperate
with the storage cluster.

8 Compute Cluster: Monitoring, Analysis and Cross-Layer Strategies

In IOStack, the compute cluster is not only a client of SDS services, but an active entity within the
system. In this section, we describe i) the design and implementation of a system performance moni-
toring, and ii) we devise novel cross-layer strategies between the disaggregated compute and storage
clusters for optimizing resources in Big Data analytics in the cloud.

8.1 Compute Cluster Monitoring

In first place, we decided to pursue the design and implementation of the system performance mon-
itoring on two different path®®. The first is to re-use Open-Source tools that are already well known
by the community and the second is to write some new tool for resources monitoring. These two
direction allow us to have two type of monitoring system with different granularity and control. The
first monitor generic resources over the entire platform. The second is used to extract specific and
raw information across a subset of VMs in order to have a better insight on the possible bottleneck
that can afflict a specific deployment configuration. Both monitoring systems have a low intrusive-
ness on the platform. Similarly to the storage monitoring in Section 7, the open source software that
we use are CollectD and Grafana. CollectD is a small daemon which collects system information
periodically and provides mechanisms to store and monitor the values in different ways. Grafana is
used for visualizing time series data for Internet infrastructure and application analytics, it features
pluggable panels and data sources allowing easy extensibility and variety of panels, including fully
featured graph panels with rich visualization options. The data collected by CollectD are parsed and
visualized in time series by Grafana. Grafana does not come with prepared templates, so a part of
our job was to create the necessary graphics needed to monitor the different aspect of the platform.

Our monitoring system in the compute cluster enables to better understand the requirements of
Big Data analytic applications. To inform this argument, our compute cluster monitoring system en-
ables us to pinpoint possible bottleneck of different compute instances deployment strategies. As we
extensively describe in deliverable 5.1, to accomplish this task we ran extreme and exhaustive tests on
different deployments with the help of both the monitoring system explained before. When running
an analytic applications, two major layers are in place: i) Compute layer and ii) Data layer. We define
the first as the union of all VMs that host the analytic framework in charge of the computation role
(e.g.: Spark, Hadoop), the second is defined as the union of all VMs that host the input dataset and
output results (e.g.: HDFS, Swift). A deployment strategy takes into account of the position of both
Compute and Data layer. We analyzed different strategies that lead to different Compute-to-Data
paths. We define Compute-to-Data path as the path that a Compute instance has to purse in order
to retrieve the needed data from the physical storage. We found that indeed a correct placement of
Compute and Data layer lead to lower analytics application run time.

Moreover, we integrated our monitoring system in the compute cluster with the IOStack dash-
board (Section 3.1). Thus, the datacenter administrator can simultaneously inspect in real time the
state of both storage and compute clusters in a single web dashboard. Such information is of great
help in order to define storage policies or perform other types of administration actions.

8.2 Cooperative Compute & Storage Clusters: Cross-Layer Strategies

Often, it is common to find large-scale data processing scenarios where compute clusters and data
stores are physically disaggregated, usually being inter-connected by a high speed networking layer.
This approach advocates for specializing storage and computation clusters in terms of hardware,
which seems reasonable given the disparate requirements of storage and computing tasks. Moreover,

33For full details on the design of the compute cluster monitoring system we refer to Deliverable 5.1.
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this scenario enables storage and compute resources to be easily shared across multiple tenants via
virtualization techniques.

Despite its benefits, the unintended consequence of disaggregating storage and compute is that
it represents a performance barrier to scale-out Big Data analytics. That is, data should be moved or
batch loaded from the data store to the compute cluster before the actual computation takes place
(i.e., bulk processing). Thus, companies are forced to adopt a “store-first-query-later” approach for
processing large volumes of data. Indeed, this has various drawbacks.

In IOStack, we propose to enable compute and storage clusters to cooperate for reducing the
overhead of traditional bulk processing Big Data analytics. In particular, we currently propose two
cross-layer strategies in this regard:

Explicit computation off-loading to the storage: The first type of cooperation between the compute
cluster and the storage subsystem in IOStack is related with our filter framework. That is, in Section
4.1.3 we described that Spark instances may explicitly offload parts of SQL statements (projections,
selections) to a SQL-like filter in the storage side. In Section 9.4, we show the promising benefits in
performance of this type of cooperation between storage and compute clusters.

SDS Data locality service for co-located computations: Our SDS Controller provides a REST API
call that retrieves information to locate the physical machine where a certain data object or volume
resides. Concretely, we name this API call a data locality service, as it provides information about the
physical location of data (e.g., get (objectID) — machineAddress).

One of the major advantages of our data locality services is that it enables compute instances to be
deployed directly on the machines containing the required data. Naturally, this may save important
amounts of network traffic within a datacenter, which may be translated into shorter compute times.

As one can infer, the cooperation of compute and storage clusters opens a wide spectrum of
possible cross-layer strategies [19]. In Section 11, we describe future innovative mechanisms that we
plan to integrate in IOStack to reduce the usage of resources and to enable predictive and automatic
storage policy definitions.

9 Benchmarking Framework

In the following, we define the benchmarking framework and use case scenarios required to validate
the overall results of IOStack. First of all, we will describe in detail several benchmarking tools
(standard benchmarks, load generators) and platforms (IOStack partners’ testing infrastructure) for
developing experimental stress-tests. This is essential to perform an exploratory analysis of new SDS
components and features in a controlled manner.

Besides, our benchmarking framework is aimed at validating the achievements of the project
making use of use case workloads: Idiada, GridPocket and Arctur. In all cases, the target company
will provide different workloads traces and data sets of their existing infrastructures. This will help
academic partners to analyze the incoming workloads, infer the SDS services suitable in each situa-
tion and reproduce workloads in a controlled environment.

The last benchmarking phase in IOStack is the use of real-workloads to test the behavior of the
system in a pre-production setting. Naturally, this phase is expected to be achieved when the plat-
form is mature enough to support actual customer workloads. The mentioned phases in our bench-
marking framework are shown in Fig. 16.

Synthetic Use-case Real

Trace Replays
Benchmarks pay | Workloads
10Stack Testing Platform Production Platform

Figure 16: Phases in the IOStack benchmarking framework lifecycle.
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Overall, the objective of our benchmarking framework is to validate the entire IOStack platform.
In this sense, this section concludes by showing a battery of experiments corresponding to already
developed IOStack components. In particular, we demonstrate that data services deployed in the SDS
layer can obtain reasonable performance and optimize their previous massive bulk data transfers
between storage and computing layers (storage optimization). Moreover, we show the advantages
of storage automation and policy management by enforcing various filters. Our early results give
a sense on the advantages that IOStack provides to the entire life cycle of Big Data flows involving
storage and computation.

9.1 Benchmarking Platforms

The cornerstone of our benchmarking framework are the available platforms that the IOStack con-
sortium contributes to perform tests and experiments. In this section, we provide a brief description
per partner of the infrastructure committed for experimentation purposes.

Arctur platform: Arctur will configure and host a separate, private cloud installation of OpenStack
to support IOStack experiments. This will enable us to install, configure and manage a separate
instance of each component, allowing us to also install various experimental components or packages
as well as alpha and beta IOStack components and patches. Front-end as well as management shell
will be accessible via Internet, providing appropriate username/password and username/sshkey
authentication for all interested project partners. We will adjust separate components in accordance
with project requirements during project lifetime. Object storage will be backed by mid-end storage
servers (12 SATA disks per server). Compute resources will be backed by high-end compute servers
(12 cores, 32 — 128 GB RAM memory per server).

10Stack .
Openst =
pansick o server
entry point
Swift-*
object storage

Nova-Compute storage servers
min 3, max 16

etc...

compute servers
OpenStack components min 1, max 24

Figure 17: Experimental platform provided by Arctur.

Eurecom platform: The virtualization layer adopted by the Eurecom platform is based on OpenStack,
an open-source cloud operating system used by many companies like Rackspace, Paypal and others.
In what follows, we describe the baseline setup and a series of instances of the Eurecom platform.

The first hardware for the Eurecom platform began arriving at Eurecom in December 2012. While
the hardware configuration and network topology has been stable since the first installation, the
software side of the Eurecom platform has seen several iterations, passing through early evaluation
to a production-like environment.

Configuring and tuning OpenStack is complex: the large number of parameters that govern sys-
tem behavior, the variety of hypervisor technologies, the different flavors of storage systems (various
file-system and logical volume management combinations), the number of alternatives to implement
network switching (GRE tunnels, dynamic VLANS) all play a crucial role in determining the overall
system performance.
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Eurecom’s cluster uses a heterogeneous set of physical machines: Eurecom has two master nodes
running on a dual quad-core Xeon L5320 server clocked at 1.86GHz, with 16GB of RAM, two 1TB
hardware RAID5 volumes, and two 1Gbps network interfaces. 6 Workers nodes execute on six dual
exa-core Xeon E5-2650L (with hyperthreading enabled) servers clocked at 1.8GHz, with 128GB of
RAM, ten 1TB disks (configured as JBOD) and four 1Gb/s network cards. 5 Workers nodes execute
on six dual exa-core Xeon E5-2630 (with hyperthreading enabled) servers clocked at 2.4GHz, with
128GB of RAM, ten 1TB disks (configured as JBOD) and four 1Gb/s network cards.

Each machine in the cluster runs the same Linux distribution, a Ubuntu 14.04 LTS, updated with
the most recent patches. All energy saving settings in the BIOS are disabled, since they cause severe
performance penalties. We use the KVM hypervisor, with virtio and vhost net acceleration modules
enabled. Virtualization support in the CPUs is enabled (VMX) and KVM uses it automatically. The
hypervisor is configured by OpenStack Nova to use LVM for VM storage.

Eurecom uses the Juno release of OpenStack, which is installed via the Ubuntu cloud reposi-
tory. One of the master nodes runs the OpenStack management services: the web-based dashboard
console, cinder, glance, keystone, and neutron (including the server, layer 2/3 services and DHCP
agents). Worker nodes are configured as compute-only nodes, and they host all the VMs created by
our tenants and users. Currently, we configured neutron to use a flat network with the linuxbridge
plugin.

MPStor platform: MPStor has set a test cloud deployment (see Fig. 18) that is comprised the by
following components:

¢ a dual controller cloud controller

* x4 compute nodes with Fiber channel and Ethernet fabric support
¢ SDS controller

* Block storage with Ethernet and Fiber channel fabric support

* Object storage with Ethernet fabric support

* VSA (Virtual storage Array, this allows many virtual storage arrays to be created from x1 phys-
ical device, this is useful in testing the REST API with many storage controllers.
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Figure 18: Diagram of MPStor testing platform.

URV platform: As a necessary task for developing our research, we set up a cluster of 12 nodes that
will be one of our testing environments in this project.
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To fit the needs of the projects, we disaggregated the (3) compute and (7) storage nodes. Compute
nodes are intended to virtualize data processing tools, like Hadoop, whereas storage nodes will sup-
port both block and object storage services. Moreover, there are 2 proxy nodes that are committed
to process external requests and run the resource-consuming services of OpenStack. Machines are
connected via 1Gbit switched network links.

In terms of software, we did a complete installation of OpenStack Kilo. The most important de-
ployed services related to the project are Nova for virtualization, Swift for object storage and Cinder
for block storage. We also deployed other services which are required for the correct operation of the
cluster, such as Glance for VM management and Neutron to configure virtual networks within the
cluster. The design of our testing platform is presented in Fig. 19.
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Figure 19: URV’s experimental platform for IOStack.

9.2 Synthetic Benchmarks

When the design and development of a new IOStack component (e.g., filter, module) reaches a pre-
alpha state, we should initiate a benchmarking phase of that component to evaluate its performance.
Therefore, we need a set of benchmarking tools that allows us to execute synthetic experiments under
controlled conditions. In the following, we describe a set of benchmarking tools that are present
during the benchmarking phase of IOStack components, which are classified into four categories
depending on their purpose: (OS) for object storage benchmarks, (BS) for block storage benchmarks,
(DA) for data analytics benchmarks and (OT) for other tools.

ssbench3* (0S): SwiftStack Benchmark Suite (ssbench) is a flexible and scalable benchmarking tool
for the OpenStack Swift object storage system. ssbench is specifically designed for load, stress and
soak testing. Among its advantages, it enables the distributed execution of workloads (multi-node),
it provides detailed performance measurement metrics, it exhibits a great workload flexibility and it
supports authentication with both OAuth 1.0 and 2.0.

Regarding multi-node workload generation, the coordination between the ssbench master process
and one or more ssbench worker processes is managed through a pair of PyZMQ sockets. This allows
ssbench master process to distribute the benchmark run across many, many client servers while still
coordinating the entire run (each worker can be given a job referencing an object created by a different
worker).

ssbench is designed to run benchmark “scenarios” against an OpenStack Swift cluster, utilizing
one or more distributed ssbench-worker processes and saving statistics about the run to a file. An
scenario represents the configuration of the workload being executed (object size, put/get ratios,
etc.). When the benchmark finishes, the ssbench can then generate a report from the saved statistics.
By default, ssbench will generate a report to STDOUT immediately following a benchmark run in
addition to saving the raw results to a file.

COSBench?® (0S): COSBench [16] is a benchmarking tool developed by Intel to measure the per-
formance of Cloud Object Storage services. COSBench provides more flexibility than ssbench in the
workload generation, but it is slightly more complex on its configuration and set up.

34https://github.com/swiftstack/ssbench
Bhttps://github.com/intel-cloud/cosbench
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In particular, to simulate diverse usage patterns, COSBench can generate different workloads
from workload models defined upon the storage interface. The current workload model can be con-
figured in terms of concurrency pattern, access pattern, usage limitation and others. This is even
more flexible than the workload models of ssbench.

COSBench now supports OpenStack Swift and Amplidata v2.3, 2.5 and 3.1, as well as custom
adaptors to any other object storage system.

SDGen (OT): Storage system benchmarks either use samples of proprietary data or synthesize ar-
tificial data in simple ways (such as using zeros or random data). However, many storage systems
behave completely differently on such artificial data than they do on real-world data. This is the case
with systems that include data reduction techniques, such as compression and/or deduplication.

To address this problem, in this project we contribute a benchmarking methodology called mim-
icking and apply it in the domain of data compression [4]. Our methodology is based on charac-
terizing the properties of real data that influence the performance of compressors. Then, we use
these characterizations to generate new synthetic data that mimics the real one in many aspects of
compression. Unlike current solutions that only address the compression ratio of data, mimicking
is flexible enough to also emulate compression times and data heterogeneity. We show that these
properties matter to the system’s performance.

In our implementation, called SDGen, characterizations take at most 2.5KB per data chunk (e.g.,
64KB) and can be used to efficiently share benchmarking data in a highly anonymized fashion; shar-
ing it carries few or no privacy concerns. We evaluated our data generator’s accuracy on compress-
ibility and compression times using real-world datasets and multiple compressors (1z4, z1ib, bzip2
and 1zma). We are currently working on integrating SDGen in ssbench and/or COSBench, in order to
provide these synthetic benchmarks with realistic contents.

fio (BS): fio® is an I/O tool meant to be used both for benchmark and stress/hardware verification.
It has support for 19 different types of I/O engines (sync, mmap, libaio, posixaio, SG v3, splice,
null, network, syslet, guasi, solarisaio, and more), I/O priorities (for newer Linux kernels), rate I/O,
forked or threaded jobs, and much more. It can work on block devices as well as files. fio accepts
job descriptions in a simple-to-understand text format. Several example job files are included. fio
displays all sorts of I/O performance information, including complete IO latencies and percentiles.
Fio is in wide use in many places, for both benchmarking, QA, and verification purposes. It supports
Linux, FreeBSD, NetBSD, OpenBSD, OS X, OpenSolaris, AIX, HP-UX, Android, and Windows.

Bonnie++ (BS): Bonnie++ allows you to benchmark how your file systems perform with respect to
data read and write speed, the number of seeks that can be performed per second, and the number of
file metadata operations that can be performed per second”. Bonnie++ will provide IOStack partners
devoted on block storage to analyze the performance of file systems mounted on top of IOStack block
volumes.

Standard Spark Workloads (DA): Apart from validating the storage layer of IOStack with storage
benchmarking tools, we also make use of Big Data standard workloads. In fact, optimizing these
workloads is one of the major objectives of this project.

Reviewing the literature, we make use of target jobs used by “normal” users and other will stress
the platform so that bottlenecks can be found easily. Some of those workloads are i) classic WordCount
application, ii) our modified version of TestDFSIO™, iii) our modified version of TPC-DS* as well
as iv) real/industrial workloads from our use-cases or public trace repositories. Other workloads
coming from recent research efforts may be also considered in our benchmarking framework [20].

We will focus on executing these data analytic workloads in disaggregated compute and stor-
age clusters. This is the main scenario for which IOStack is designed, in order to provide real data
analytics as a service in the cloud.

36https://github.com/axboe/fio
37http://www.coker.com.au/bonnie++/
Bhttps://github.com/michiard/TestDFSIO
Shttps://github.com/DistributedSystemsGroup/Spark-TPC-DS
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9.3 Use-case Workloads and Trace Collection

Apart from synthetic benchmarks, in IOStack we focus on gathering traces from real workloads to
exercise the SDS system under realistic conditions. In this regard, the use-case companies of the
consortium play a critical role. Next, we provide a brief description of the scenario and type of
workload that these companies have to handle daily. Given that, we define the guidelines that use-
case companies will follow to gather traces from their system to provide them to other partners.

9.3.1 Arctur

Scenario: Arctur is a PaaS, IaaS and SaaS provider. Besides pure infrastructure related services it also
provides consulting and training as well as services customization. That said Arctur mainly targets at
specific, end-user oriented market rather than mass-market. In particular, Arctur supports two main
types of workloads: i) General computing virtual machines, and ii) High Performance Computing
(HPC) applications.

Regarding the first scenario, the main production environment is based on VMware vSphere
Enterprise Plus 5 with vCloud Director 5. Arctur can allocate a particular amount of resources (CPU,
memory and storage) to interested IOStack partner where one can utilize all the features that vCloud
Director offers (fast provisioning, etc.).

Regarding HPC, Arctur provides specialized offer for running HPC jobs on its HPC cluster. Ser-
vices are sold as CPU-hours or by renting a number of physical nodes in the HPC cluster. Environ-
ment is pre-configured with various pre-installed software and tools (compilers, MPI, open-source
end-user software solutions i.e. OpenFOAM, etc.)

The infrastructure where both types of workloads are running is presented in Fig. 20.
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Figure 20: Arctur’s infrastructure where different types of customer workloads (General Computing,
HPC) will be captured.

Arctur is running virtualized environment on VMware vSphere platform with approximately
500 virtual machines and we could get some traces from VM storage usage. Moreover, Arctur has
customers running HPC applications with heavy storage usage that are suitable for monitoring and
trace collection.

Naturally, these workloads may be of great interest to exercise the IOStack platform under realis-
tic conditions. In the following, we describe various aspects of Arctur workload that will be object of
trace collection, as well as the tools needed to build such traces.
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Traces: Arctur will provide several options for logging and capturing traces and activity as proposed,
but not limited to the following:

* Capturing system logs from servers on various services and data centre levels. Arctur is using it’s
internal centralized syslog management therefore we are able to collect any kind of logs that
are using the industry standardized syslog logging format. Logs can be later on anonymized
and processed for the needs of the projects.

* Capturing OpenStack Swift logs. To this end, Swift already provides a fairly good logging system
that enables one to analyze the storage interactions.

 Capturing traces on file system level for various workloads. Low level tracing of file system logging
can be enabled on supported Linux filesystems. One example of these kind of tracing would
be 10 Block Traces (Drive). This type of traces describe the input/output activity of a hard /ssd
drive. There are currently tools that do the hard work of monitoring and reporting logs about
the drive activity with very low overhead (1-2%). In this sense we could use the blktrace*’
utility to evaluate the cost of making. This tool is integrated in the Linux Kernel and produces
logs of the IO activity for particular drives. One potential use case for such tracing would
be running 10 intensive HPC applications while tracing the activity of the underlying storage
infrastructure.

 Capturing VMuware virtual machines virtual disk traces for various workloads. Arctur is running test
and production VMware environment with hundreds of virtual machine. Therefore one of the
option is also to trace the activity of the virtual disks activity for a particular subset of virtual
machines.

9.3.2 Idiada Traces

Scenario: The workload of Idiada encompasses several stages, as we describe next. The first stage is
called model preparation. In this phase, users create models in the workstation and they save the data
into the shared storage. This access is made using a mount point through a NFS services if they are
working under GNU/Linux or CIFS if they are working under Windows.

The second stage is called simulation. That is, once the model is prepared and saved in the shared
storage they submit the jobs to the Grid Engine (GE). The GE sends the job to the simulation server
which will run several processes. As first stage it will copy the data into a dedicated storage from
scratch. Then, the simulation process runs the process over this dedicated storage. As last step in
this stage, the results are copied to the shared storage, in the old path were the simulation stores the
model. The last stage is the data analysis. Thus, once the simulation is finished, the end user reads the
results with specific applications over the same mount point as the model preparation stage.

Traces: Given the previous workload, there are several aspects of our storage lifecycle than can be
analyzed and inspected. In particular, we plan to instrument the following parts of our storage
lifecycle for providing the consortium with traces.

First, data copied over the network from the workstation to the used server. To this end, we make
use of tcpdump to trace NFS/CIFS access via the network. Moreover, we can provide dumps pfI1/0
operations in the server where model is stored using blktrace.

Second, while the simulation process runs. In this scenario, we also make use blktrace to capture
I/0 activity in the storage devices. Similarly, we can get the I/O activity data analysis stage, as it
has the same behavior as the preparation stage. Traces of the data analysis stage would be very
interesting in order to understand the I/O activity of data analytics applications at low level.

4Onttp://linux.die.net/man/8/blktrace
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9.3.3 GridPocket Workload

Scenario: The use case takes into account the technical deliverables of each partner, in particular
IBM, URV and Eurecom, the state-of-the art of available technologies, and project objectives. The
selected use case scenario will consist on deployment of a “privacy-by-design” architecture based on
the IOStack platform.

Several energy utility companies and infrastructure manufacturers has been interviewed. These
interviews have confirmed market interest for the privacy functionality in relation to the energy data.
The technology benchmarking exercise has confirmed a possibility of proposing solution meeting
market objectives and going beyond the industrial state-of-the-art. The regulatory aspects have been
studied with respect to national and European initiatives. Two conference calls has been organized
with experts of ENISA (European Union Agency for Network and Information Security).

GridPocket has identified functional requirements for the basic energy data anonimysation algo-
rithm based on data down-sampling and up-sampling. This algorithm will leverage on the IOStack
platform computing performance to offer better analytics experience for end-users and data scien-
tists.

Traces: GridPocket has put in place a machine-to-machine (M2M) framework enabling collection of
data (energy usage traces). This architecture has been setup independently from platforms of energy
utilities in order to produce data sets free of privacy constraints and other legal limitations. The
data collection architecture is composed of the private cloud systems and set of remote sensors. The
cloud servers implement three layers architecture: machine-to-machine semantic communication,
data storage and analytics layer, and data presentation layer. The system is deployed in a private
cloud with usage of containers technology.

The collected data corresponds to electric energy consumption traces and meta data.

This system has been installed in real buildings with consent of occupants. The implemented
energy sensors enable large flexibility in terms of data intervals and resolution. The data storage and
analytics layer ensure generic smart grid data analytics capabilities.

Two user interfaces has been developed to enable exploitation of the platform. A utility adminis-
tration interface enables the platform administrator to control the status of the system. An end-user
interface enables building user to access energy consumption data.

9.4 Experimental Results of IOStack Platform

At this point, we have described the architecture of IOStack as well as the tools and platforms for val-
idating its correct operation via real-world benchmarks and experiments. Next, we present a battery
of experiments that already certify the correctness and performance of some IOStack components.

9.4.1 Enforcement of Storage Automation and Dynamic Policies

Storage Automation Policies. In this experiment, we want to evaluate the benefits of enforcing
storage automation policies on Big Data workloads using the IOStack filter framework for object
storage. Specifically, we executed in parallel workloads of tenants T1 (write-only) and T2 (read-
dominated), drawing a similar scenario to the one proposed in Section 2.1.

The workload of T1 is generated by an object storage benchmark (ssbench) that uploads 32K syn-
thetic text objects of 10MB in size using 4 threads. T2 is represented by a Spark deployment (3 worker
VMs, 1 master VM) that downloads an existing log file of 164GB in size (64MB splits, .csv format).
This log file represents the activity of users in a large storage system, and each line includes several
tields like user_id to identify the user performing the action, file_id that specifies the file that is
being managed, or msg to provide additional information (e.g., error messages), among other fields.
Given that, after downloading the log, T2 performs a simple word count task on the user_id field to
calculate the number of occurrences of users.

We executed this experiment on the URV testing platform (see Section 9.1). Thus, compute
nodes virtualize the Spark deployment (T2), whereas storage nodes and the proxy run Swift and
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our IOStack prototype (SDS Controller and filter framework). We execute ssbench in other servers at
URYV, so T1’s PUT requests access our cluster from the Internet.

OpenStack Swift
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Figure 21: Comparison of Swift and IOStack in a multi-tenant scenario. Scatter plots show the
throughput of tenants’ requests and the boxplot depicts the throughput of PUT requests for T1.

Benefits for T1: T1 is a write-only tenant that uploads log-like data to the system. Therefore, given
that log-like data tends to be highly redundant, we enforced in IOStack a compression policy in the proxy
—a filter that uses gzip— to tenant T1 in order to i) improve transfer performance and ii) minimize
storage usage. Hence, scatter plots in Fig. 21 show the throughput of T1’s PUT requests (ssbench) and
T2’s GET requests (Spark), for both Swift and IOStack.

Observably, due to the parallelism of PUT requests, the Swift proxy cannot deliver to T1 more than
30MBps per request. Furthermore, when Spark starts downloading data, the throughput of both
tenants decreases drastically: most concurrent requests exhibited a throughput around 4-6MBps.

Conversely, IOStack performs significantly better that Swift for PUT requests of T1 due to the en-
forcement of a compression policy on highly redundant data. That is, the boxplot in Fig. 21 demon-
strates that IOStack may achieve a median write throughput of 3x higher than Swift. Furthermore,
as visible in the lower scatter plot of Fig. 21, T1’s PUT operations are only slightly affected when T2
starts its activity.

Apart from transfer gains, IOStack also involves important storage space savings. To wit, T1
stored along the experiment 312GB of data in Swift —considering 3-way replication, the actual
amount of consumed storage is 936GB. Due to the high redundancy of data produced by ssbench [4],
IOStack compressed T1’s data to 0.1% of its original size.

Benefits for T2: T2 uses Spark to download a dataset and to account the number of user id occurrences
on it. Given that, we noted that T2 only needs a fraction of the dataset to carry out such a task (i.e., user
id fields). Thus, we enforced in IOStack a compute-close-to-data policy that filters on the server side
the data actually needed by T2. Intuitively, such an active storage filter may yield two advantages
for T2: i) To reduce the total amount of data to be transferred from the object store to the compute
cluster, and ii) to decrease data processing times.

Firstly, we noted that filtering the dataset at the source enables an important reduction of band-
width for T2. Specifically, retrieving only user id fields instead of all fields per line of log reduces
the amount of outgoing bandwidth in 95.6%. Although the throughput of T2’s transfers is lower for
IOStack due to filtering overhead and the smaller object size, the traffic reduction greatly amortizes
these penalties.

A consequence for T2 of enabling IOStack to filter data objects at the source is that Spark process-
ing times are much lower. That is, the Spark cluster exhibited a processing time of 9, 625s and 4, 009s
for Swift and IOStack, respectively. This means that IOStack reduced the processing time of Spark in
58% compared to a regular Swift deployment.

Benefits for the administrator: These results are very interesting from a performance perspective. How-
ever, the major benefit of IOStack is to provide a datacenter’s administrator with a simple way of
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Figure 22: Example of a dynamic storage policy. When T1’s requests reach the workload condition,
the system automatically triggers compression.

enforcing storage policies to object requests. To conclude, our experiments certify that IOStack en-
ables easy and effective enforcement of a wide range of policies (data reduction, compute), which
can greatly improve the operation of a multi-tenant object store.

Dynamic Policies: Next, we examine the operation of dynamic storage policies in IOStack. That is,
Fig. 22 shows T1 performing PUT requests with increasing intensity. Then, we defined a dynamic
policy that will enforce data compression on T1’s requests if it exhibits > 3 PUT per second:

FOR T1 WHEN PUTS_SEC > 3 DO SET COMPRESSION

Under such workload, our monitoring system updates the number of PUT/sec of T1. Then, the
policy actor subscribed to this metric detects that the workload of T1 satisfies the condition, and
triggers the enforcement of a compression filter. From that point onwards, requests are compressed
and, due to the redundancy of data objects, exhibit higher throughput. This demonstrates the ability
of IOStack to manage dynamic storage policies, that may apply to a wide variety of filters.

9.4.2 Bandwidth differentiation results

A first set of experiments are done into a SAIO installation, using a 7200 rpm HDD for object stor-
age. The workloads are sent to Swift using another client machine connected using a 1GB network.
On some experiments, the client is executed also on the server machine to get the maximum disk
performance not possible when using the network.

We have a second experiment to explore the Bandwidth assignation. It is done inside a Cluster
from Arctur with 6 Object Servers and a Proxy. Results are presented using the time as x-axis and the
Bandwidth obtained as the y-axis.

Bandwidth differentiation uses COSBench [16] as benchmark. As we do not have any cancel op-
eration (needed to be able to relocate) in the server side, the bandwidth assignment tries to maintain
a fair relation with the assigned BW. As a side effect, having different BW assignments creates some
bursts in the data and HDD devices work better than without BW assignment.

We configured COSBench to use 300MB objects, with 300 seconds, using 2 drivers and 8 workers
per tenant. Tests are done with 3 tenants.

Table 9.4a presents the results of different bandwidth assignations, including no assignations and
the original Swift. Here we obtain better performance, even without BW assignation, due to a better
scheduler behavior. But we achieve better performance when we assign different BW at each tenant
due to more bursty requests. Itis interesting to observe the Max Priority row, where we assign infinite
bandwidth to one tenant, that COSBench did not achieved to get the Tenant 2 and Tenant 3 objects
due to time outs on the client side. With HDDs is easily to observe that the concept of maximum BW
is hard to define due to its dependency with the workload.

Using Arctur’s Cluster we tested the Bandwidth differentiation mechanism using more object
servers and bigger objects. We can observe that the relations between the different tenants are main-
tained, even if we exceed the cluster capacity. As we cannot cancel objects and the Bandwidth ob-
tained is workload dependant, we should be proactive and try to do not send the objects to an over-
loaded server. On this experiment we have send request for 1GB objects with a single tenant with a
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Experiment Tenant 1 | Tenant2 | Tenant 3 | Total BW (MB/s)

No BW Diff 8+0,1 8+0,1 | 7,9+0,1 23,95
Max Priority: T1 101,84+0,6 0+0 0+0 101,80
BW Diff: 50/-/- 674+42 | 48+06 | 4,7+05 76,85
BW Diff: 70/-/- 782425 | 4,7+15 | 4,7+1,5 87,51
BW Diff: 25/25/- 32+5,1 | 30,4+54 | 3,9+0,7 66,32
BW Diff: 15/20/15 | 16,6+1,7 | 24,6+4,3 | 17+2,1 58,13
Original 77403 | 7,7£0,3 | 7,740,3 23,15

Table 9.4a: BBandwidth differentiation using HDDs. Numbers are MB/s. Includes 95% confidence
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Figure 23: Performance obtained with 1 tenant requesting two 1 GB objects with the original Swift
(left) and the modified one (right). The requests go to different object servers. Background I/O noise
due to replication.
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Figure 24: Performance obtained with 1 tenant requesting three 1 GB objects with 30 MB/s Band-
width Differentiation (left). Performance obtained with 2 tenants requesting two 1 GB objects each
one with 30 MB/s and 50 MB/s. Each tenant is directed to a different Object server (right).

bandwidth differentiation of 30MB/s per Object server and without bandwidth differentiation.

As we can see on Figure 23 (left), the requests does not get a lot of throughput, being 40MB/s the
maximum per object server due to background noise created by Swift replication mechanisms. On
Figure 23 (right). Using the modified Swift the results are similar but more stable, obtaining a slightly
better performance.

However, if we setup bandwidth differentiation, requests start to being reordered, prioritized
and burst opportunities start to arise. Figure 24 (left) shows how a request on a single object server
obtains the 30MB/s and the other two requests, going to another object server share the 30MB/s
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Figure 25: CSVStorlet performance relative to plain Swift GET.

assignment with 15MB/s each one. As observed, the Bandwidth obtained does not go higher than
the required, due to the background I/0O activity. However, the required level is guaranteed thanks
to the low-level implementation that manages all the I/O in the node.

On Figure 24 (right) we setup two tenants with 50MB/s and 30MB/s bandwidth. Then each
tenant asks for two objects. On this scenario each tenant goes to a different object server, we can see
how OBJ1 and OB]J2 are sharing the BW as they enter at the same time, but OBJ4 is obtaining the
maximum (50MB/s) until OBJ3 enters the object server. In that moment the two objects start sharing
the Bandwidth.

9.4.3 Experiences with the Spark SQL push-down filter

Setting. The Swift cluster has 2 physical nodes: 1 proxy node and 1 data node where each node has
8GB memory and 4 cores and where the nodes communicate through a 1Gbit network. The Storlet
middleware is typically configured so that the storlets run in the proxy node, however for compari-
son we also rerun some of the experiments when the Storlet is run at the data node. Spark compute
cluster consists of a single node which runs Spark 1.5 augmented with the SQL pushdown mecha-
nism (see Section 4.1.3). Typical experiments consist at querying a 1GB CSV file. The experiments
where performed in an isolated environment: no interference from other load was applied to any of
the nodes.

Standalone invocation of the CSVStorlet. Our first set of experiments consisted at invoking the
CSVStorlet directly from the proxy node using a curl command (thus Spark is not involved). This
permits us to analyze the Storlet behavior while removing interferences due to Spark. Then we
present an initial analysis of an end to end experiment where a SQL query invoked within a spark
shell is handled with through the SQL pushdown mechanism.

We analyzed the time it takes to process a 1GB CSV file through the CSVStorlet when we varied
the percentage of the data that was filtered out by the Storlet. Fig. 25 gives the ratio of the time it
took to invoke the Storlet as compared with the average time it took to perform a plain GET Swift of
the full file without invoking the Storlet. These results are given both when the Storlet is run at the
proxy node and at the data node.

First of all, the results show that the performance is quite independent of where the Storlet runs
(proxy versus data node). This obviously assumes that the node is not by itself a bottleneck due to
unrelated load. Not surprisingly this ratio increases with increasing percentage of data which is not
filtered out. We observe that when we filter out 75% of the data it takes approximately the same time
to retrieve the data as getting it with a plain Swift GET.

During these experiments, the network was not a bottleneck, however if it were, the advantage of
running the Storlet would certainly have been more evident. In addition when the Storlet is invoked,
the Spark side benefits from the following factors: i) Not having to filter again the data, less CPU is
invested at running the SQL query, ii) Receiving less data, the memory pressure on the Spark cluster
is diminished.
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Figure 26: Identifying potential performance bottlenecks in the Spark SQL push-down mechanism.
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Figure 27: CSVStorlet performance related to the number of CSV rows processed per batch.

As we will see with the end to end experiments, the performance acceleration is much better than
what this standalone graph can show.

Varying internal Storlet components to detect bottlenecks. We instrumented the Storlet code so
that to skip the predicate evaluation (while taking care not to modify the output data) and/or the
writing of the data to the output. Fig. 26 gives an idea of to what extend we could improve the
Storlet performance by improving the predicate evaluation performance.

Analysis of the number of records processed per batch. The following graph gives the total time
needed to process the 1GB targeted file as function of the number of rows processed by batch.

As can be seen in Fig. 27, the performance, at least in the sterile performance environment use,
does not vary assuming when the number of records per batch varies between 100 and 40, 000. Con-
sequently we set the default value of this parameter to 1,000 so as to not to increase the memory
pressure that could be felt when multiple Storlet invocations are run.

Concurrency analysis First we analyzed the effect of invoking concurrently the Storlet. Each invoca-
tion is still against a 1GB file.

We observe in Fig. 28 a linear degradation in the performance of the Storlet as concurrency in-
creases. Resource analysis of the proxy node shown that it was CPU bound while the memory pres-
sure was very light. This means that the total CPU resource of the proxy nodes should be adequately
adjusted according to the expected Storlet invocation concurrency. This may be handled either by
statically adjusting the CPU capacity of the Swift proxy nodes (that will run the Storlet tasks) or/and
by dynamically adjusting the number of proxy nodes. The results obtained when concurrency is 6
will be clarified in the following paragraph.

Since Spark tasks typically address file ranges of between 32 and 128MB, we repeated the previous
experiment but for smaller files (32 MB) where we measure the ratio of how long it took to invoke a
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Figure 28: Concurrency influence for 1GB tasks.

single task with concurrency varying between 1 and 14 versus the average time that it takes to run a
task with concurrency one.

The graph in Fig. 29 reproduces the results which can be explained as follows: First we have
explain that we used the 5 default value for the storlet_daemon_thread_pool_size parameter?!, so that
for a concurrency level of up to 5, we observe a (pseudo linear) degradation.

When we get to concurrency level to 6, one of the 6 tasks will be enqueued till the first task of
the group of five tasks which got immediately scheduled completes. Thus between 6 and 11 we can
observe that the classes are separated into two groups: The first one with approximately constant
run time (for tasks who are scheduled immediately), while the second group consisting of the tasks
who got enqueued, will run approximately as for a consistency level of 1 to 5 with the addition of the
mean time to execute the tasks of the first group.

The same reasoning applies for higher number of tasks, so that between 12 and 15 the tasks are
separated into three groups. We experience with varying values of the storlet_daemon_thread_pool_size
parameter but could not observe improvements (we in fact observed a degradation). This is due to
the fact that the specific proxy node that we use has 4 cores, so that 5 concurrent Storlet invocations
is enough to saturate the CPU power use of the node. However, without any doubt this parameter
should be tuned as function of the number of cores of the Swift nodes used so that proper concurrency
can be reached.

Execution time ratio

s b s No wait tasks '
Task concurrency » Enqueued wait 1 tasks
Enqueued wait 2 tasks

Figure 29: Concurrency influence for 32MB tasks.

End to end Spark to CSVStorlet invocations. First of all we compared the time to run a simple
query (counting the number of records of a 1GB CSV file such that their 4th field was equal to a
given value). We observed an acceleration factor of between 2 and 4. The specific experiment that
we ran caused to filter out 98% of the data. We will further analyze the performance while varying
that parameter in the near future. The SQL query spawned 33 spark tasks, each addressing a 32MB

41See https://github.com/openstack/storlets/blob/master/Engine/swift/storlet_gateway/storlet_runtime.
py
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range of the targeted file (which is slightly bigger than 1GB).

We analyzed for these experiments the timing of each of the 33 CSVStorlet invocations as detailed in
Fig. 30 (left) and the invocation duration as detailed in Fig. 30 (right) where we can see, as expected
that the time it takes to complete a Storlet invocation increases with the number of concurrent Storlet
invocations.

time in s
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Figure 30: Storlet execution times.

9.4.4 Storage Filters in Block Storage

In order to test throttling, 4 block volumes were created on the consumer node. FIO was used as
test tool to run a MB/sec and an IO/sec test. Fig 31 (left) shows the available BW/sec for the 4
volumes of approx. 64MB/sec aggregate and approx. 16MB/sec per volume. In a multi- tenant
cloud configuration it is important that the data flow can be controller at either the BW /sec or IO/sec
by the top level SDS application. A non-controllable block storage means very low predictability of
when tasks will complete. The right amount of IO/sec and MB/sec must be allocated to the storage
application and in particular low priority tasks must be throttled back in preference to higher priority
tasks.

In Fig. 31 (right) the 4 volumes have been throttled to 3,5,7,7 MB/sec for both reads and writes.
The measured results are practically 100% fit to the expected results. These throttle levels were chosen
so that neither the network or storage were the bottleneck.
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Figure 31: Default IO per second of tested volumes (left). Result of setting bandwidth throttling filter
in MB per second (right).
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In Fig. 32 (left) the 4 volumes have been throttled to 3K, 5K, 7K and 7K 10/sec for writes. The
measured results are practically 100% fit to the expected results. These throttle levels were chosen so
that neither the network or storage were the bottleneck.

In Fig. 32 (right) the 4 volumes have been throttled to 3K, 5K, 7K and 7K IO/sec for reads. The
measured results are lower than expected. Work is ongoing to try and understand what is happening
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as the throttle levels were chosen so that neither the network or storage were the bottleneck.
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Figure 32: Results of applying the bandwidth throttling filter in IOs per second on volumes for writes
(left) and reads (right).

10 Integration Among Building Blocks: Overview

IOStack has been planned to enable a natural convergence of the individual contributions of each
partner into a single and unified SDS toolkit. Next, we describe and highlight the main interactions
among partners that glue together the IOStack architecture:

Compute cluster hints to storage layer (EUR, MPS, URV): To integrate the disparate roles of com-
pute and storage clusters, IOStack will enable both entities to cooperate for optimizing Big
Data analytics in the cloud. Essentially, such a coordination is realized via cross-layer schedul-
ing and provisioning strategies. Currently, we IOStack provides compute instances (e.g., VMs
or containers) with means to communicate with the SDS Controller in order to retrieve data
locality information. This will enable efficient co-located computations of ephemeral compute
instances deployed directly on the physical machines where data is stored.

Object storage filter framework (BSC, IBM, URV): The filter framework for object storage is already
integrating the individual contributions of various partners. In particular, the filter framework
for the 1.5 year review will contain at least a data compression filter, a SQL push-down filter
and a IO bandwidth differentiation filter. All these filters will be enforced via high-level storage
policy definitions from the administration dashboard.

Dynamic storage policies (MPS, URV): The design of storage policies unifies the management of
both object and block storage from the administration viewpoint. That is, the SDS Controller
uses the same syntax and internal middleware to deploy and enforce filters via dynamic stor-
age policies. Our dynamic storage policies framework is abstracted from the actual storage
subsystem via a common monitoring framework and high-level REST APIs at the SDS Con-
troller level.

Web Dashboard (MPS, EUR, ARC, URV): In terms of usability, IOStack aims at being a human-
friendly framework easy to manage for datacenter administrators. The administration Web
dashboard integrates the management of block and object storage subsystems, as well as real-
time monitoring information of both the storage layer and the compute layer. It represents a
point of integration among multiple building blocks, facilitating the management of the com-
plete SDS system to an administrator.

Deployments and trace-based experiments (All): All partners, and specially the use-case ones, are
doing joint efforts to define and extract workload traces to feed experiments with realistic data.
Moreover, academic partners may benefit from these traces to find novel effects that could
improve the operation of the SDS system.
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11 Conclusions and Future Directions

In this document, we described the design and architecture of IOStack. From a bottom-up perspec-
tive, we first depicted our framework to enforce storage filters, for both object and block storage subsys-
tems. Storage filters leverage a powerful SDS service for enabling general-purpose transformations
on data flows. In IOStack, the management of filters (e.g., deployment, enforcement) is abstracted
via simple REST APIs.

The filter framework API, as well as other federated SDS services in IOStack, are under the um-
brella of a central management entity: the SDS Controller. In fact, the SDS Controller offers easy-
to-use filter management and compute and storage cluster monitoring information facade, as well as
a distributed and high-performance metadata store to preserve metadata related with the SDS layer.
Such a set of functionalities lies behind an intuitive graphical web dashboard, that extends the original
OpenStack Dashboard.

At the top of the SDS Controller operation, we find the dynamic storage policy framework. This
mechanism enables datacenter administrators to write simple policy definitions that, in turn, de-
scribe a workload condition (e.g., Throughput < 10MBps) that should be satisfied to trigger the en-
forcement of a storage filter on a tenant’s requests. From our viewpoint, dynamic storage policies
greatly simplify the management of filters to administrators, providing automated provisioning to
IOStack founded on live workload-based decisions.

Another innovative point in IOStack is the exploitation of cross-layer scheduling and provision-
ing strategies between disaggregated compute and storage clusters, typical of Big Data analytics in
the cloud. As a first cross-layer strategy, we propose to provide compute instances with data locality
information to perform ephemeral and efficient computations directly where data lives. As we de-
scribe next, these cross-layer strategies will bridge the gap between disaggregated storage and com-
pute clusters; in IOStack, both clusters cooperate to achieve better coordination, accurate provisioning
and higher resource optimization.

Apart from the architecture of IOStack, we describe the benchmarking framework that will assess
the correctness and performance of the resulting toolkit. Our benchmarking framework combines both
technologies and methodologies, including the active participation of use-case companies to leverage
real-world traces for generating realistic workloads in our experiments. We also showed a battery
of experiments that demonstrate both the usability of our benchmarking framework as well as the
potential of IOStack.

In our view, the achievements of this deliverable represent a remarkable step towards the creation
of an open-source SDS toolkit for Big Data. Furthermore, the progress of the project and the tight
collaboration among partners draws promising milestones in the horizon. In particular, we describe
the following innovative aspects that are related to the future architectural aspects of IOStack:

* Filter pipelining for object storage: Currently, one of the limitations of our filter framework for
object storage is the lack of pipelining, that is, we can enforce only one filter per data flow. The
next stages of development of our filter framework will clearly target the ability of pipelining
several Storlets for the same object request. Moreover, this would be accompanied with advanced
features in our storage policy framework to help the administrator to detect potential conflicts
of pipelining disparate filters.

* Decentralized controller strategies: Today, the SDS Controller is devised as a single, central-
ized entity in charge coordinating the available SDS services. However, this architecture may
represent a bottleneck for the system and it may exhibit communication inefficiencies in many
situations. For this reason, we are exploring alternative designs in which the SDS Controller
logic could be decentralized and executed in form of micro-controllers [21].

* Storage Policy Stereotypes: There are data analytics jobs that exhibit similar behavior and
requirements. That is, the requirements of groups of jobs in a Big Data workload may be ac-
curately described by a single job stereotype that encompasses a set of storage policies. Thus,
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agents in the compute cluster may be used to inform I0Stack of the requirements of incoming
data analytics jobs (i.e., the stereotype they belong to), so that the definition of storage policies to
tenants is transparent to the administrator.
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