
HORIZON 2020 FRAMEWORK PROGRAMME

IOStack
(H2020-644182)

Software-Defined Storage for Big Data
on top of the OpenStack platform

D5.3 Consolidated System Monitoring and Deployment
Tools

Due date of deliverable: 31-12-2017
Actual submission date: 31-12-2017

Start date of project: 01-01-2015 Duration: 36 months

Ref. Ares(2017)6380960 - 29/12/2017

Summary of the document

Document Type Deliverable

Dissemination level Public

State v1.2

Number of pages 29

WP/Task related to this document WP5

WP/Task responsible EURECOM

Leader Pietro Michiardi (EUR)

Technical Manager Francesco Pace (EUR)

Quality Manager Ramon Nou (BSC)

Author(s) Francesco Pace (EUR), Daniele Venzano (EUR), Pietro
Michiardi (EUR)

Partner(s) Contributing EUR, URV, GDP, BSC, IBM

Document ID IOStack_D5.3_Public.pdf

Abstract Nowadays, data-centers are largely under-utilized because
resource allocation is based on reservation mechanisms
which ignore actual resource utilization. Indeed, while
the amount of resources used by applications is not con-
stant throughout their execution, it is common practice to
provision (and reserve) resources for peak demand, which
may occur only for a small portion of the application life
time. As a consequence, cluster resources are reserved
but often go under-utilized. A solution is to give resource
schedulers the possibility to take decisions based on the
resource utilization rather than reservation. However, a
direct application of this solution can exacerbate resource
contention, which ultimately can result in application fail-
ures. In this work, we propose a mechanism that improves
cluster utilization, thus decreasing the average turnaround
time, while preventing application failures due to con-
tention. Our approach, which monitors resource utilization
and relies on resource demand forecasting, is able to reduce
the turnaround time by more than one order of magnitude
while minimizing application failures. Thus, tenants en-
joy a more responsive system and providers benefit from a
more efficient cluster utilization. We materialize our solu-
tion as a system working along side Zoe Analytics which is
a core block of the IOStack toolkit.

Keywords scheduling, core, elastic, analytics applications, distributed

History of changes

Version Date Author Summary of changes

1.0 04-10-2017 Pace Francesco First version

1.1 06-10-2017 Daniele Venzano Write Zoe Analytics sections

1.2 30-10-2017 Pace Francesco Write Research sections

H2020-644182 RIA
31-12-2017 IOStack

Table of Contents

I Zoe Analytics 2

1 Zoe Analytics introduction 2

2 Summary of progress 2
2.1 Trademark and logo . 2
2.2 Kubernetes support . 2
2.3 Evolution of the user interface . 3
2.4 Industrialization, testing and CI . 4

3 Integration with Crystal 5

4 Status of the open source project 6

5 Planned releases and future road map 7

II Dynamic resource allocation scheduler 8

6 Introduction 8
6.1 Reservation centric resource allocation . 9
6.2 Problem Statement . 9

7 Related Work 11

8 System Design 12
8.1 Time-Series Predictors . 13
8.2 Addressing Resource Conflicts . 17

9 Numerical Evaluation 18
9.1 Methodology . 18
9.2 Simulation results . 19

10 System Implementation 23

11 Experimental Evaluation 24

III Conclusions 26

i

H2020-644182 RIA
31-12-2017 IOStack

Executive summary
This deliverable presents the benefits that can be achieved when low-level performance information
is used in a feedback loop to drive scheduling and deployment systems. Nowadays, data-centers
are largely under-utilized because resource allocation is based on reservation mechanisms which
ignore actual resource utilization. Indeed, while the amount of resources used by applications is not
constant throughout their execution, it is common practice to provision (and reserve) resources for
peak demand, which may occur only for a small portion of the application life-time. Our approach,
which monitors resource utilization and relies on resource demand forecasting, is able to reduce the
turnaround time by more than one order of magnitude, while minimizing application failures. We
materialize our solution as a system working along side Zoe Analytics, a core component of the
IOStack toolkit.

In the first part of the document we describe how the project Zoe Analytics has advanced, the
implementation improvements, the interest it generated in several well-known companies and the
integration with other core components of the IOStack toolkit.

In the second part of the deliverable we present a dynamic approach to scheduling analytics ap-
plications and its implementation in Zoe. Optimization objectives, algorithms and scheduling poli-
cies are explained, together with the evaluation, performed with simulations and an implementation
based on Zoe.

Page 1 of 29

H2020-644182 RIA
31-12-2017 IOStack

Part I

Zoe Analytics
1 Zoe Analytics introduction
Zoe Analytics solves the problem of easily, quickly and reliably deploying complex, distributed ana-
lytic applications on clusters of physical or virtual machines.

It does so by implementing a thin layer on top of an existing orchestration back-end that offers
easy user access to available applications and resources. Zoe applies advanced scheduling concepts
to manage the queue of incoming requests, with the goal of minimizing turnaround times.1

Zoe manages applications. An example of a Zoe application is a Jupyter Notebook, with the
Python kernel, the PySpark library, an Apache Spark master and several Apache Spark workers.
This is a full distributed analytic application that requires extensive systems knowledge to set up
correctly by hand. Zoe not only automates the deployment of this ZApp (Zoe application), but also
assigns resources automatically and dynamically, based on up-to-date monitoring information. Since
Spark workers are elastic (at least one is needed to make progress, if more are available progress will
be faster) Zoe can regulate the number of running workers based on overall cluster usage metrics. In
II we describe the research on scheduling preemption and on dynamically regulating resources for
each ZApp service.

ZApps are defined using a JSON document and some meta-data. Creating new ZApps requires
knowledge of how the back-end works and its image format. For this reason the creation of ZApps
is usually limited to power users and administrators.

2 Summary of progress
Since Zoe was last described in deliverable 5.2, the project has made good progress in numerous
areas. Below we touch on the most important points, for a more complete picture, check also the
change log available in the Zoe repository on GitHub and the Zoe website.

In 2017 KPMG2 invested in Zoe and actively participated to the development with one devel-
oper and several internships. Their contribution has focused on Kubernetes support and on running
automated tests on the code base.

Air France/KLM also continues to use Zoe, contributing useful feedback and bug reports. Zoe
has been deployed in all three data centers and is preferred over competing solutions from IBM and
others.

2.1 Trademark and logo

The Zoe project has gathered a lot of interest from numerous parties, interested users and competitors
alike. EUR often receives queries and collaboration offers from start-ups and the Zoe website is
visited almost daily by Google, Amazon and Microsoft employees.

To secure the project identity EUR decided to register a trademark on the name and logo. After
research for conflicting registrations, EUR decided to register the name “Zoe Analytics” and the logo
visible in figure 1.

At the time of this writing the Eurecom legal department is in charge of the procedure to register
the trademark in France. Later the registration will be extend to the EU and other countries, as
needed.

2.2 Kubernetes support

Google Kubernetes (https://kubernetes.io/) is one of the major players in the container orchestra-
tion space. The project is open source and takes its roots from Borg and the long experience of Google
in the virtualization business.

1The time interval between a request submission and its completion. See deliverable 5.2 for more details.
2KPMG DE (https://home.kpmg.com/de/de/home.html) is one of the leading providers of audit, tax and advisory

services in Germany, employing more than 10.200 people.

Page 2 of 29

https://kubernetes.io/
https://home.kpmg.com/de/de/home.html

H2020-644182 RIA
31-12-2017 IOStack

Figure 1: The Zoe logo

KPMG has taken the decision to use Kubernetes internally for a number of services and web
applications. Since Zoe has been built from the start to share its back-end with other applications,
the obvious step was to have Zoe talk to Kubernetes. This way a single cluster, with a single pool of
resources, can be used concurrently, by web services, batch analytic jobs and data scientists, without
any system administration overhead.

Starting from the 2017.03 release, in March 2017, Zoe supports Kubernetes as a back-end. In the
2017.06 (June) release a big refactoring and clean-up effort was concluded to create a real pluggable
back-end system. A well defined interface sits between Zoe and the back-end library, paving the way
to support other orchestrators. Even non container-based ones, like OpenStack, are possible. ZApp
descriptions have been cleaned-up as well, removing Docker specific entries.

There are other benefits in supporting Kubernetes. While setting up Kubernetes is not easy, ready-
made deployments are available on all major cloud platforms, making it possible to have one-click
Zoe deployments in the cloud, for example.

Moreover, having a generic back-end API, makes Zoe future-proof and ready to work with new
orchestration systems with minimal changes.

2.3 Evolution of the user interface

Initially Zoe was used by experienced users who do not mind using command-line tools. When
the user base started growing, the need for a more advanced web interface become more and more
evident.

One of the most requested features by users was to have a list of applications to chose from. This
request, apparently simple, becomes much more complex once the realities of Zoe deployments are
taken into account.

To update the user web interface we needed to define a generic ZApp package, that describes the
following items in a generic and portable way:

• parameters: most ZApps have parameters to customize the way they run. Some examples
are resource limits (CPU, memory), software versions, locations of external services, etc. Each
parameter should come at least with a type, some validation mechanism, a brief documentation
and a way to apply the value to the ZApp.

• documentation: how use the ZApp, what libraries and software versions it contains

• permissions: administrators want the ability to decide who can access a certain application

• logo: to make the application list attractive, each ZApp should have a graphical logo

• software image: each container back-end has its own way of managing system images. Swarm
and Kubernetes use the Docker image format, that can be built by Docker tools using a Dock-
erfile

• other meta-data: author name and email, a web URL to check for updates

Page 3 of 29

H2020-644182 RIA
31-12-2017 IOStack

Figure 2: New web interface: the ZApp shop at Eurecom.

With this information it is possible to build in Zoe a generic “app shop”, that users can access to
list ZApps, read information about each one and start new executions. We made available a number
of ZApp packages via GIT and in the source code Zoe distribution, so that Zoe deployers can start
with a rich selection of pre-built ZApps.

Together with the “app shop” development, we rebuilt the web interface of Zoe, to have a better
usability and provide useful information at a glance. Colors and fonts have also been changed to
match the new logo.

Figures 2 and 3 show two screen-shots of the new web interface and the “app shop”.

2.4 Industrialization, testing and CI

An important contribution of KPMG activities has been to define an environment to automatically
test Zoe via a continuous integration (CI) pipeline. While KPMG decided to base their CI pipeline on
Jenkins (https://jenkins.io/), we decided to implement it with the CI features of GitLab (https:
//about.gitlab.com/).

Of particular interest to an Open Source project like Zoe, GitLab requires the CI pipeline to be
defined in a text file together with the source code. The advantage is that it is much easier to describe
document and replicate the same pipeline elsewhere, for other contributors. The same feature is also
available in Jenkins, but it is not yet fully supported.

Figure 4 visualizes the stages that compose the test pipeline. Each stage is run in a clean Docker
container, that is created just for the test, containing the source doe version to test and the necessary
library requirements.

The first stage is for static testing. Python is a dynamic language and Python code does no go
through a compilation phase. Numerous tools have been developed to scan the code looking for
syntax and type errors.

• docs-test: Zoe documentation is written with Sphinx. Here we test that the documentation is
well formatted and that all internal references are consistent

• pylint: pylint is a static testing tool for Python code. For Zoe, we decided to set the bar very
high and to pass the test, no errors or warning of any kind are accepted.

Page 4 of 29

https://jenkins.io/
https://about.gitlab.com/
https://about.gitlab.com/

H2020-644182 RIA
31-12-2017 IOStack

Figure 3: New web interface: the execution list can be searched and is easier to read.

• unittests: a small part of the code base (9%) is covered by unit tests. Part of the road-map and
future work is to extend the coverage to more areas of Zoe.

The second stage runs an integration test. All Zoe components are started in a clean environment
and the most important API endpoints are exercised automatically. This helps to catch incompat-
ibilities with new external library versions, since the clean environment is re-installed each time
according to the official installation procedure, by downloading dependencies from the Internet.

The third stage build new Docker images containing the new version of Zoe. If the pipeline
reaches this stage, the source code has passed all tests.

The deploy stage deploys Zoe in a staging environment, where it can be tested by hand:

• docs: build and pushes the documentation to a web server accessible internally, so that the
latest documentation can be accessed by the developers

• mirror-github: mirrors the GitLab repository to GitHub, for better project visibility

• zoe: deploys Zoe on a virtual machine, so that it can be tested by hand

Finally, the clean-up stage removes Docker images from previous builds that are no longer needed.
KPMG has added also SonarQube (https://www.sonarqube.org/) to their testing pipeline. It is a

product that tracks code quality over time, by running a set of tests for each commit and generating
an overall score. Several languages are supported: for Python the tests are performed by pylint.

3 Integration with Crystal
The IOStack project proposes an integrated vision from the top, the analytic tools users, to the bottom,
the storage services. Zoe is near the top of this stack and needs to communicate with the lower layers.

Page 5 of 29

https://www.sonarqube.org/

H2020-644182 RIA
31-12-2017 IOStack

docs-test

pylint

unittest

api-test images

docs

mirror-github

zoe

cleanup-images

Static test
Integration

test
Build Deployment Clean-up

Figure 4: The CI pipeline implemented with GitLab at Eurecom. Each push to the master branch of
the public repository goes through all stages.

The ZApp description of Zoe has been augmented with new fields that help Crystal in identifying
the correct policy to apply at the storage that will be involved.

Whenever a new user starts a ZApp, thereby creating a new execution, Zoe sends via RabbitMQ
a message containing the following information:

• user / tenant ID

• high-level policy to apply (gold, silver or bronze, for example)

• which storage system is going to be used by the execution

Other information that Zoe can provide include:

• the position of executions in the Zoe scheduling queue, to give Crystal a forewarning of when
the execution is going to start

• more specific information about which parts of the storage are going to be used (specific files
and objects)

At this time, testing to understand the impact and usefulness of each piece of information is
undergoing.

For more information about Crystal, refer to deliverable 2.4.

4 Status of the open source project
Zoe Analytics has been an open source project since the beginning. In 2017 the project has started
seeing external contributions from KPMG, that pushed for important new feature developed entirely
with their own resources.

Air France/KLM has a long history of “invisible” collaboration with the project. Because of very
strict internal policies, employees are not permitted to contribute directly to open source projects. A
process to change these policies has been started. Currently we receive feedback on Zoe via email
and via periodic meetings at Eurecom and in Air France Sophia Antipolis. Zoe is known at the
highest levels of the company and it has been chosen over other solutions from IBM and Microsoft.
Air France data scientists are enthusiastic about the system and the way it lets them work from day
to day.

We are also establishing internal rules that all contributors wishing to participate need to adhere
to:

• Fixed release schedule, one release every three months in March, June, September and Decem-
ber

• A mailing for internal communication

Page 6 of 29

H2020-644182 RIA
31-12-2017 IOStack

• Use of the public GitHub issue tracker to coordinate all bug reports and feature requests

• Tests that need to pass for contributions to be accepted and merged

• Coding style and code quality metrics

• A public road map

A possibility we are investigating is pushing Zoe Analytics to become an Apache project, under
the umbrella of the Apache Software Foundation3.

5 Planned releases and future road map
At the time of this writing, the 2017.09 release has been published, containing mainly the ZApp shop
and the new web interface.

During the 2017.12 release cycle, we will concentrate our efforts on:

• Affinity and anti-affinity: when deploying services, Zoe should be able to instruct the back-
end to run them near each other (on the same host, affinity) or far (on different hosts, anti-
affinity). We have measured that the placement of services impact has crucial implications for
performance, for example for TensorFlow applications.

• Alternative back-end: Zoe, historically, has supported Docker Swarm. Docker is in the process
of deprecating it, so we need to find a valid alternative and develop a Zoe back-end for it.

We have also research activities, in progress, that, once complete, will be transformed into produc-
tion code and released as part of the open source project. They include the preemption and dynamic
allocation work that is presented in the next part of this document.

3http://www.apache.org/foundation/

Page 7 of 29

http://www.apache.org/foundation/

H2020-644182 RIA
31-12-2017 IOStack

0 20 40 60 80 100
Resource Utilization %

0.0

0.2

0.4

0.6

0.8

1.0

Service-Mem
Service-CPU
Other-Mem
Other-CPU

Figure 5: Resource Utilization from Google cluster [11, 10].

Part II

Dynamic resource allocation scheduler
6 Introduction
Data-center efficiency is a key issue that has attracted a vast amount of research [1, 2, 3, 4, 5, 6, 7].
Recently, the cloud computing paradigm, both in its public and private forms, fueled the proliferation
of a wide array of resource management mechanisms [4, 5, 8, 9] aiming at an efficient operating point,
where cluster resources are fully utilized. Despite such efforts, data-center resources go often under
utilized, as shown in many recent traces from large-scale production deployments [10, 11]. Figure 5
illustrates resource utilization in a operational cluster at Google, for a mixed workload of production
services and batch applications; in most cases (∼ 80%) resource utilization is less than the 40% of
resources allocated for batch applications, and less than the 80% for service applications.

Current approaches that address efficiency requirements fall in two broad categories. There are
those that aim at steering tenants’ behavior through the design of carefully engineered incentive
mechanisms, which are largely adopted by public cloud providers [1]. In this case, tenants are en-
dowed with the task of optimizing their cost to operate their applications, whereas providers operate
on prices to steer the allocation of idle resources. Alternatively, other approaches opt to operate at
the system level, and propose mechanisms that gauge resource allocation based on information on
resource reservations [12, 3, 9, 4, 5, 8, 13].

In general, the ultimate goal of current approaches is to render the concept of resource reservation
obsolete, and either let tenants reason in terms of value and cost [1], or let the system determine
how to avoid wasting precious and costly resources, especially when the latter are scarce and entail
application queuing in the scheduler.

Although the concepts we present in this work are widely applicable to a general concept of cloud
applications – which include for example long-running, latency sensitive production services – we
apply them to the exponentially growing body of data-intensive applications that use distributed

Page 8 of 29

H2020-644182 RIA
31-12-2017 IOStack

frameworks such as Apache Spark [14], Google TensorFlow [15], and similar, to accomplish tasks
such as data transformation and cleaning, large-scale machine learning, and scientific applications.

6.1 Reservation centric resource allocation

In most private or public cloud systems, users gain access to computing resources by specifying
the amount required to run their application, in the form of a reservation request. Upon receiving
a request, the cluster scheduler decides which application to serve based on the scheduling policy
the provider implements (e.g.; First-In-First-Out (FIFO), Shortest Job First (SJF)). Cluster schedulers
operate according to several variants of objective functions, the most common being the (i) average
turnaround time and (ii) makespan. The first metric accounts for the average time requests spend
in the system (queuing and execution times). The second metric considers the time required by the
system to complete the aggregate workload of the requests received. Optimizing for such objectives
translates in high system responsiveness, which is truly desirable from the tenant perspective.

Cluster schedulers use a resource management mechanism that is in charge of resource provision-
ing and management. Given a resource request, the resource manager determines its admission in
the cluster based on its reservation information.4 An admitted request triggers a resource allocation
procedure, which eventually [5] concludes with reserved resources being exclusively allocated to the
request.

In most system implementations, the concept of reservation and allocation coincide, although
neither is representative of the true resource utilization a request might induce on the system. In fact,
resource utilization is generally not constant throughout a request lifetime, and fluctuates according
to application behavior [16].

The main consequence for current cloud environments is that reservation requests are engineered
to cope with peak resource demands of an application. This is a key factor that induces poor system
utilization, and ultimately, efficiency. This condition is exacerbated by coarse-grained reservation
specifications, which is a common practice in public cloud providers: instance flavors exhibit discrete
gaps in terms of resource units. In fact, picking the right configuration for cloud applications (and
in particular for the “big data” applications we consider in this work) is a daunting task [17], which
requires sophisticated optimization mechanisms going beyond human tuning abilities. As a simple
example, consider a provider offering two flavors of Virtual Machine (VM) (or Containers), with
32GB or 64GB of main memory. An application requiring e.g. 33GB of memory will necessarily need
a reservation request for the latter flavor, resulting in almost 50% of resource slack.

Thus, mechanisms to reduce resource slack, which is defined as the difference between resource
allocation and resource utilization, are truly needed, for they can prevent clusters from denying ad-
mission for new requests which would queue up, while spare capacity goes unused.

6.2 Problem Statement

In this work, we focus on distributed analytics applications and consider systems such as [18, 19],
which allow to treat distributed data processing frameworks [14, 15] as an individual collection of
resource requests. Indeed, such frameworks are composed by several components, that are char-
acterized by either a core or elastic nature. Core components are compulsory for a framework to
produce useful work; elastic components, instead, optionally contribute to a job, e.g. by decreasing
its runtime. Consider, for example, a framework such as Apache Spark. To produce work, it needs
some core components: a controller, a master, and one worker. Any additional worker is an elastic
component. An application with core components only is called rigid, whereas applications with
a mix of core and elastic components is called elastic. Note that two components, albeit running
replicas of the same function but on different data, generally exhibit different resource utilization
patterns.

With this context in mind, in this work we study the problem of cluster efficiency by minimizing
the resource slack.5 Recall that slack arises because of reservation centric resource management,

4In our prose, we neglect several important technical details that are however irrelevant to our point, such as quota
management, security aspects, and concurrency control, to name a few.

5By abuse of notation, in this context, the term minimize does not involve the theoretical task of a formal proof.

Page 9 of 29

H2020-644182 RIA
31-12-2017 IOStack

Figure 6: Illustrative examples of request scheduling: (top) without and (bottom) with resource recla-
mation.

which matches allocation to reservation. In abstract terms, we approach the problem by studying
ways of modulating resource allocation to follow utilization as closely as possible. A simple toy
example nicely illustrates the intricacies of the problem.

Toy Example. Consider the simple, one dimensional packing problem we illustrate in Fig. 6. We
assume a cluster with a finite capacity of 10 resource units (RAM, in this case), which receives two
application requests: A and B, which both arrive at the same time and have an execution time of
10 seconds. A is over-provisioned: it reserves 7 units, but its utilization fluctuates. Instead, B is
well-calibrated and reserves and uses 4 units.

We assume a simple FIFO policy which breaks ties randomly. In this situation, current reservation
centric approaches would admit a single application. In Fig. 6 (top) we illustrate the case in which
application A is scheduled first, whereas application B sits in the scheduler queue. Indeed, reserved
resources are locked by A and cannot be granted to B.

Instead, as shown in Fig. 6 (bottom), by mapping resource allocation to real utilization, thus
using resource allocation and not reservation to admit new requests, B can be scheduled and produce
work. This contributes to both shorter average turnaround times and makespan. However, resource
utilization dynamics introduce an issue: by following too closely utilization, sudden spikes could
wreak havoc in the system, inducing the underlying operating system to manage “self-inflicted”
memory shortages in an application-agnostic manner [4]. Due to the seemingly unique ways in
which utilization can vary, matching resource allocation to utilization for each application can only
be approximate, and approximation errors will inevitably induce application failures.

Careful engineering would suggest to introduce a buffer that will act as “safe-guard” to the ap-
proximation, such that resources are allocated in a way to absorb unexpected demand. This last

Page 10 of 29

H2020-644182 RIA
31-12-2017 IOStack

consideration suggests that the problem we study revolves around two key aspects:

1. Resource allocation should follow utilization dynamics, to minimize slack.

2. Resource allocation should allow for unexpected demand peaks, to prevent application failures.

Unfortunately, these two aspects are at odds: the larger the tolerance of the system to approximation
errors, the smaller the gains in terms of system efficiency.

Contributions. In this work we present our design of a data-driven scheduling mechanism that
improves cluster utilization, thus decreasing the average turnaround time, while preventing appli-
cation failures due to resource contention. Our approach monitors resource utilization and relies on
sophisticated resource demand forecasting to modulate allocated resources such as they approximate
utilization patterns well.

Our experiments, that we conduct on a system simulator as well as a system implementation
using real-life data-center traces, indicate substantial gains over existing alternatives: our approach
contributes to more efficient and responsive clusters, while carefully controlling the number of appli-
cation failures due to the approximate nature of our control approach. In summary, the contributions
we present in this work are as follows:

• We present the system design for a dynamic resource allocation mechanism, which can be gen-
erally applied to existing cluster management frameworks. In this work, we target a specific
family of analytic application schedulers, and materialize our ideas for such schedulers.

• We introduce a novel component for accurate forecasting of resource utilization, featuring a
probabilistic treatment that allows quantification of uncertainty. Confidence information is
used to steer system parameters to safeguard against unexpected resource demand peaks.

• We perform an extensive simulation campaign using publicly available production traces from
Google data-centers. We compare our approach to that of Borg, and discuss about the trade-off
that an optimistic vs. a pessimistic approach to application preemption entails.

• We present the design of a system implementation of our idea, that we use in an academic
cluster serving students and researchers. Our preliminary results indicate substantial improve-
ments in terms of efficiency, which translate in a system capable of ingesting a heavier workload
with the same number of machines.

The remainder is organized as follows. In Section 7 we review related works, while in Section 8
we present our system design. We validate our ideas using a simulation campaign in Section 9,
present our system implementation in Section 10 and its evaluation in Section 11.

7 Related Work
Dynamic resource allocation has been approached in many different ways in the literature [4, 20, 21,
6, 7, 22, 23, 12, 24, 3, 25, 26, 27, 1, 2].

The authors in [20, 21] present a solution called KOALA-F that is based on a feedback control
loop that requires every framework running inside the cluster to periodically send information to the
scheduler. Every framework must be enhanced so that it can talk directly to KOALA-F, in order to
transmit information about their metrics in form of color: red, yellow and green. KOALA-F will
allocate or deallocate resources to that specific framework based on that color. Red means that the
framework is struggling due to lack of resources, yellow is the good state, while green means that
there are more resources than needed. In our work we operate on the application rather than on
the framework level. In addition, our solution does not require such instrumentation; we are com-
pletely agnostic to the application that is running and we use general metrics in order to dynamically
reallocate the resources of the running applications.

Page 11 of 29

H2020-644182 RIA
31-12-2017 IOStack

The authors in [6] introduce a type of scheduler that is reservation-based. They propose a reserva-
tion definition language (RDL) that allows users to declaratively reserve access to cluster resources.
They formalize the planning of current and future cluster resources as a Mixed-Integer Linear Pro-
gramming (MILP) problem and they integrate their work in YARN [28]. In our work, we avoid
delegating this task to users by asking them to specify such information; most of the time the users
themselves have no idea of how their applications will behave.

Some other works like [1, 26] propose to address the problem with economics principles. In par-
ticular, in [26] the authors build a pricing model that enables infrastructure providers to incentivize
their tenants to use graceful degradation, a self-adaptation technique originally designed for con-
structing robust services that survive resource shortages. The authors in [1], present a framework for
scheduling and pricing cloud resources, aimed at increasing the efficiency of cloud resources usage
by allocating resources according to economic principles. However, they use an overbooking mecha-
nisms to achieve their goals, which is a solution prone to application failures when the resources are
not sufficient.

Finally, works like [3, 25, 7, 22, 23, 12, 24], focus either on resource placement or on meeting Ser-
vice Level Objective (SLO) requirements. In the first case they relate the problem to a packing prob-
lem and try to optimize it, while in the second case they leverage the elasticity of some frameworks
and they give more resources to applications that are falling behind on their SLO.

Albeit all these works are valid and propose their own vision of the problem, they all share one
element: they focus on “time sharable” resources, like the CPU, rather than resources that are “finite”
like Memory6. In particular, the outcome of a process that does not have enough CPUs will be a
slower runtime, while in the case where the amount of Memory is insufficient, the application will
fail.

The only work that addresses “finite” resources is [4], where Borg is introduced: a large-scale
cluster management system used in Google. Among other features, Borg features a resource recla-
mation system that seizes unused resources and offer them to other applications. Despite the lack
of details of their design and implementation, the authors study the impact of wrong memory re-
allocation on running tasks, which causes resource contention: the OS enters a special state to kill
processes that are Out Of Memory (OOM). The authors present different levels of “rigidity” for their
reclamation system (baseline, medium and aggressive) and show both the benefit and the number
of OOMs events for each of them. They conclude by stating that they accept the trade-off obtained
by the medium setting. In our work, we seek to gain control over the OS and minimize such events
while maximizing the resource utilization.

8 System Design
For the purpose of clarifying our approach, we present our design as an instance working in con-
junction with an application scheduler such as [18, 19]. However, it is straightforward to apply our
approach to other cluster management back-ends such as Docker Swarm [29] and Kubernetes [30],
or alternative schedulers [31]. Figure 7 outlines our design, which consists of four modules which
operate on a given cluster management back-end: an application scheduler, a resource monitor, a
forecasting component and an actuator.

A bird’s view on the operation of our system is as follows. Application execution requests take
the form of resource reservations, which are submitted to the application scheduler. The application
scheduler admits the request based on reservation information alone, and instructs the back-end to
provision and allocate the necessary resources. The resource monitor collects information about both
allocated and used resources, which are fed to the system state and the forecasting component respec-
tively. The actuator module gauges resource allocation to match predicted utilization patterns, and is
responsible for the preemption of running applications in case of sudden peaks in resource demand.
The modified resource allocation is reflected in the system state, which triggers new scheduling de-

6On the one hand, a resource is considered “time sharable” when the Operating System (OS) is able to use time sharing
for scheduling it, and thus it does not impose limits on its availability. On the other hand, “finite” resources are those that
cannot be sliced in time and thus cannot be effectively shared by multiple processes.

Page 12 of 29

H2020-644182 RIA
31-12-2017 IOStack

Figure 7: System design.

cisions. Next, we describe in more detail the components that materialize our ideas.

Resource monitor. It collects information about resource allocation and utilization from every com-
ponent of every running application. This happens at regular time intervals: higher frequencies pro-
vide more accurate views, but generate more data. Our goal is to minimize intrusiveness by being
application agnostic: for this reason we do not instrument applications (as done for example in [20]),
but take standard metrics (CPU, memory, etc) as they are seen by the OS.

Forecast module. Its task is to anticipate the resource utilization of every application component.
We advocate for a Bayesian approach to predict resource utilization and quantify the uncertainty
of these predictions. A more detailed exposition of the Machine Learning (ML) methodology we
employ can be found in Section 8.1.

Independently of the prediction methodology, we identify an important parameter that defines
the “lookahead” of the prediction, which we call the prediction window ω. Naturally, a large ω
induces less confidence in future utilization predictions. However, a small ω could potentially mask
a future demand peak. To mitigate such effects, the predictor returns the maximum value of resource
utilization in the given future time window ω.

Actuator module. This module uses utilization forecasts to adjust the resources allocated to every
component of a running application. We anticipate prediction errors, thus we compensate using a
“safe-guard” buffer of size β to artificially increase (that is, to force over estimation) predicted peak
resource utilization. The buffer size β is a function of the uncertainty quantified by the forecasting
module.

Additionally, the actuator is in charge of preemption. Preemption policies can either be optimistic
[5, 4] or strict (pessimistic). We advocate for a strict policy, to avoid delegating application preemp-
tion to the OS, which manages resource shortage (such as OOM problems) in an application agnostic
way. A detailed exposition of the preemption policy can be found in Section 8.2.

8.1 Time-Series Predictors

Recently, machine learning inspired scheduling methodologies have gained popularity in the field of
cloud computing. An approach that relies on the clustering of historical data to increase resource uti-
lization has appeared in [32]. The Ernest [33] framework makes use of a parametric model to predict
the running time of a given job on a specified hardware configuration. Predicting resource demand is
also a key aspect of the ERA framework [1]. In our work, we pay particular attention to load forecast-

Page 13 of 29

H2020-644182 RIA
31-12-2017 IOStack

ing: we employ a flexible non-parametric methodology that makes no modeling assumptions (e.g.
linearity) and that offers uncertainty quantification.

We have seen that the forecast module is responsible for making predictions about the future
resource utilization. Regarding a single application, we assume data is available in the form of a time
series that reflects the memory usage of its components across time. We seek to discover patterns of
memory usage that allow reasoning about our expectations regarding the future state of the system
utilization.

We have opted not to follow traditional time series analysis approaches [34], as it is of great
importance to quantify the level of uncertainty associated with each prediction. Predictive errors are
unavoidable, thus predictive confidence can be used as a guide to adjust the degree of adaptiveness
to the anticipated workload. Intuitively, a prediction with low confidence implies that the actuator
module should be more conservative regarding changes in resource allocation.

For this reason we use a scheme that relies on Gaussian Process (GP) regression [35], which is
a Bayesian non-parametric regression method with many attractive features. Bayesian approaches
control model complexity and thus avoid problems such as over-fitting (i.e. constructing overly com-
plicated models that generalize poorly) [36]. Moreover, GPs offer a sensible framework for tuning
their hyper parameters, through evidence maximization, that does not require cross-validation ap-
proaches which are typically more expensive and unpractical in the context of our work. Finally, the
output of a GP regression model is a predictive distribution, rather than a single prediction, which
allows reasoning about uncertainty.

More formally, a GP is a collection of random variables, any finite subset of which follows a mul-
tivariate Gaussian distribution. A GP is essentially a generalization of a Gaussian distribution in the
space of functions, and it is uniquely characterized by a mean function µ(x) and a covariance func-
tion k(x, x′). In general, the task of regression is to infer a latent function f given a set of observations
X and y, where X is a matrix containing the observation inputs and y the corresponding vector of
outputs. In GP regression in particular, this is achieved by considering a prior GP distribution over
the space of functions, and then by evaluating the posterior function distribution in light of the ob-
served data X and y, as specified by the Bayes rule. It is common practice to consider a zero mean
function for the prior, i.e. µ(x) = 0, as it is sensible in most cases to subtract the mean from the input
data. The prior covariance value between inputs x and x′ is determined by the kernel k(x, x′). Under
the assumption of a Gaussian likelihood, that is for any input-output pair we have: y ∼ N(f (x), σ2),
the posterior is also a GP whose mean and covariance can be calculated analytically. For the mean
and covariance function of the posterior GP given a zero-mean prior we have:

E[f (x) | X] = k(x, X)(k(X, X) + σ2)−1y (1)

Var[f (x) | X] = k(x, x′)

− k(x, X)(k(X, X) + σ2)−1k(X, x)
(2)

The predicted value at a new point will be the expectation under the posterior distribution, and the
posterior variance quantifies the uncertainty about the prediction.

Different choices for the prior covariance function will result in different predictive distributions.
In general, the optimal choice for the kernel is problem-dependent; it is the responsibility of the mod-
eler to use a kernel that respects the peculiarities of the data. For example, the squared-exponential
kernel is a popular choice in many contexts where a smooth function is desired, as it assigns non-zero
prior probability to smooth functions only. In this work, we aspire to capture functions that are not
necessarily differentiable, therefore the exponential kernel is a more reasonable choice:

k(x, x′) = α exp
(
−|x− x′|

l

)
(3)

where α and l are the amplitude and length-scale hyper-parameters of the kernel. We shall adopt the
common strategy to optimize α and l by means of evidence maximization.

Page 14 of 29

H2020-644182 RIA
31-12-2017 IOStack

50 60 70 80 90 100
Time

1000

1500

2000

2500

3000

3500

4000

4500

5000

M
e
m

o
ry

 u
se

d

Past observations
Predicted Values

Figure 8: Predicted workload for a sample time series.

However, we are not ready to apply GP regression just yet; the time series data in their original
form are not well-suited for this kind of treatment. A GP model transfers information across points
that are considered similar, as this is reflected in the choice of the covariance function. If we assume
that the inputs X solely consist of the recorded times, then similarity is only a matter of temporal
locality, which is not optimal practice if the aim is to predict sudden changes of behavior throughout
the course of a time series.

Hence, we resort to the definition of a kernel that relies on the observation history. It is implicitly
assumed that if two sequences of observations are similar, then they must have been caused by the
same “hidden” background processes; it is reasonable then to extrapolate and predict that the future
observations will be similar as well. Such a history-dependent kernel can be easily constructed by
transforming the data in an appropriate way. Consider a history window of size h, the training
instances will be vectors of the form:

x̃n = [xn, yn−h, . . . , yn−1]
>

where xn is the n-th recorded time. Therefore, the history-dependent kernel is implemented by ap-
plying a typical exponential kernel on the transformed inputs:

kh(x, x′) = k(x̃, x̃′) (4)

Two different inputs x and x′ will be similar if they have a similar history, or equivalently, if the h
preceded inputs have similar outputs. Note that we have kept the recorded times xn along with the
history, thus we do not completely ignore locality in the original input space.

From a practical perspective, the load forecast component performs the following steps every
time new data is available from the monitor module:

1. New resource utilization data is appended to the collection of observations X, y.

Page 15 of 29

H2020-644182 RIA
31-12-2017 IOStack

0 10 20 30 40 50 60
Error %

0.2

0.4

0.6

0.8

1.0

Exp h=10
Exp h=20
Exp h=40
RBF h=10
RBF h=20
RBF h=40

Figure 9: Error distribution of predicted workload for a collection of time series in our academic
cluster.

2. Using a history-dependent kernel kh(x, x′), Equations (1) and (2) are used to make predictions
for a window ω based on observations X, y.

An example of regression with a history-dependent kernel can be seen in Figure 8. The black dots
represent the past utilization observations up to time 80; at this point GP regression is employed to
produce estimations of the utilization for the next 20 time units. The shaded areas represents the 95%
confidence interval for the predicted values.

We have to note that the regression step can be computationally expensive; Equations (1) and (2)
involve a matrix inversion (for k(X, X) + σ2), which is an operation of cubic complexity, and the set
of observations X, y will grow indefinitely during the lifetime of the system. There is a plethora of
methodologies on sparse GPs in the literature [37, 38, 39, 40], that can be used to reduce the complex-
ity of regression. In terms of this work, we adopt the simple solution of restricting the history X, y to
the N latest observations, thus keeping the model relatively small.

We have prioritized on simplicity because the system will have to keep many predictive models
concurrently: we have a regression model for each component of every running application in the
system. In the experiment summarized in Figure 9, we see that our design choices are enough to
capture recent trends in data. We have applied our scheme on a dataset consisting of approximately
6000 time series that monitor the memory usage for applications in our academic cluster. Figure 9
summarizes the empirical distribution function for the predictive errors observed across the entire
dataset. We have experimented with different values for the size h of the history window; as seen in
Figure 9, increasing the value of h results in smaller prediction errors.

Also, for the implementation of the history-dependent kernel as described in (4), we have experi-
mented both with the exponential and the squared-exponential (also known as RBF in the literature)
functions. Figure 9 implies that the exponential implementation outperforms the RBF choice in terms
of prediction error. This result is in line with our expectations, as the time series in question are typ-
ically not smooth. For the experiments of Section 9 and Section 10, we consider the exponential
implementation of the history-dependent kernel only.

Page 16 of 29

H2020-644182 RIA
31-12-2017 IOStack

8.2 Addressing Resource Conflicts

We now delve into the details of the actuator module, and focus on its approach to application pre-
emption. Recall that the actuator varies allocated resources as a function of predicted utilization:
upon a spike, it needs to redeem resources from running applications and dedicate them to those ex-
periencing a peak demand, for otherwise such applications are doomed to fail. Thus, the goal of the
preemption policy is to decide how to redistribute resources, by operating on running applications
and their components. Such a policy can optionally account for application priorities, as dictated by
the application scheduler. Note that, irrespectively of the chosen preemption policy, a failed appli-
cation is resubmitted to the application scheduler, making sure it enters the scheduling queue in a
position commensurate to its original priority.

Algorithm 1: Host-level resource allocation and pessimistic preemption policy.
Data: JH ← jobs on hostH

1 J ← SORT(policy, JH)
2 resFree← host.resources
3 foreach req ∈ J do
4 C ← req.CoreCpts
5 tmpResFree← resFree−∑j∈C Cj. f utureRes
6 if tmpResFree < 0 then
7 INSERT(req, K)
8 else
9 resFree← tmpResFree

10 E← SORT(timeAlive, req.ElasticCpts)
11 forall the e ∈ E do
12 if resFree− e. f utureRes ≤ 0 then
13 INSERT(e, KE)
14 else
15 resFree← resFree− e. f utureRes

16 foreach req ∈ K do
17 PREEMPTREQ(req)

18 foreach e ∈ KE do
19 PREEMPCOMPONENT(e)

20 foreach c ∈ ⋃j∈J (req.CoreCpts ∪ req.ElasticCpts) do
21 RESIZECOMPONENT(c)

Recent works (for example [4]) advocate for an optimistic preemption policy, which is reminiscent
of optimistic concurrency control [5]: resources are redeemed without taking explicit actions to man-
age the consequences of resource redistribution. Either explicit (and often manually set) priorities
determine the fate of running applications, or the task is left to the OS.

Here, we present an alternative preemption policy, which we call pessimistic. Our goal is to
control which application should be partially or fully preempted, while minimizing the amount of
work that is wasted by preemption.7

Algorithm 1 present the details of our resource allocation and pessimistic preemption policy: the
algorithm operates at the host, rather than at the cluster level. The algorithm starts by sorting (line
1) the applications running on each host according to the application scheduler policy (e.g.; FIFO,
SJF, etc.). Then it simulates (lines 2-15) an allocation by trying to maximize the resource utilization
while minimizing the number of running applications. In particular, it first allocates the core (line 5)

7We consider preemption primitives such as a kill operation, which inevitably wastes work. Component or application
suspension and migration are outside the scope of this work. Alternatively, it would be interesting to consider techniques
such as [41], which would allow a graceful management of memory pressure.

Page 17 of 29

H2020-644182 RIA
31-12-2017 IOStack

CPU Memory
0.0

0.2

0.4

0.6

0.8

1.0

%
 R

es
ou

rc
es

Cluster Resources
Allocation Utilization

FIFO-R FIFO-E
103

104

105

106

107

T
im

e
(s

)

Application Turnaround

FIFO-R FIFO-E
0

100

101

102

103

104

105

106

107

T
im

e
(s

)

Application Queue

Figure 10: Results obtained from a system with no dynamic reallocation, called baseline.

components and then all elastic components8 that fit in the host (lines 11-15). If there is free space
left, it moves to the next application in line and repeats. The algorithm continues the loop at line 3
until the host is full. Resource allocation is determined, and we can turn our attention to preemp-
tion. Core components that no longer fit a host entail full application preemption (line 16). Also
elastic components can be preempted (line 18), inducing only a partial application preemption. Fi-
nally, the algorithm resizes (line 20) the components according to the simulated system, following
the computed allocations and preemption.

Since application progress can be lost, our algorithm allocates the core components of an applica-
tion, then moves to the elastic components by giving more priority to the ones that have been living
in the cluster for a longer time (line 10). Components recently scheduled are the best candidates for
preemption, because they have likely produced less work.

9 Numerical Evaluation

9.1 Methodology

We evaluate our algorithm using an event-based, trace-driven discrete simulator which was devel-
oped to study the scheduler Omega [5], and was later extended in [18] to study application sched-
ulers. We have made additional extensions9 to support the concepts of this work.

In particular we have implemented two alternatives for time series prediction. We first consider
an ideal setup with an oracle with perfect information about future workload: this allows to deter-
mine an upper bound of the performance gains achieved by our approach. We then use GP regression
described in Section 8.1, with the intention to investigate the impact of prediction errors on system
performance.

In this work, we are mainly interested in focusing on memory resources, which are much harder
to manipulate than computational (CPU) resources. We use publicly available traces [11, 42, 10, 43],
and generate a workload by sampling from the empirical distributions computed from such traces.
We simulate both rigid (e.g. TensorFlow) and elastic (e.g. Apache Spark) variants of batch applica-
tions, which use the label R and E, respectively. Applications are assigned a number of components
ranging from a few to tens of thousands. The resource requirements (in terms of memory) of applica-
tion components follow that of the input traces, ranging from a few MB of memory to a few dozens
of GB, and up to 6 cores. Application runtime is generated according to the input traces, and ranges
from a few dozens of seconds to several weeks (of simulated time). Application inter-arrival times
are drawn from the empirical distributions of the input traces, and exhibit a bi-modal distribution
with fast-paced bursts, as well as longer intervals between application submissions.

We simulate a cluster consisting of 100 homogeneous machines, each with 32 cores and 128GB
of memory. All results shown here include 10 simulation runs, for a total of roughly 3 months of
simulation time for each run.

8In the case the application scheduler does not support the distinction between core and elastic components, all com-
ponents are treated as core.

9https://github.com/DistributedSystemsGroup/cluster-scheduler-simulator

Page 18 of 29

https://github.com/DistributedSystemsGroup/cluster-scheduler-simulator

H2020-644182 RIA
31-12-2017 IOStack

The metrics we use to analyze the results include: (i) application turnaround, which allows rea-
soning about the scheduling objective function, (ii) resource allocation, measured as the percentage
of CPU and memory the scheduler allocates to each application, (iii) resource utilization, measured
as the percentage of CPU and memory that each application uses and (iv) application failures, which
give us information about the aggressiveness of our approach. Additionally, we show queuing times,
which are an important factor contributing to the turnaround time.

9.2 Simulation results

In this section we first show the baseline performance achieved by a reservation centric application
scheduler. Then we move to the evaluation of our dynamic resource allocation mechanism: we first
show ideal results obtained with an oracle, and compare them to a full-fledged mechanism that uses
GP regression. In doing so, we also compare optimistic and pessimistic preemption policies.

Baseline. A reservation centric approach achieves the performance reported in Figure 10. On the
left we show the difference in resource allocation compared to utilization of CPU and memory. This
result reiterates on the low efficiency of reservation centric approaches: the median resource slack
is large (40% for the CPU and 90% for the Memory). Untapped resources could be used to decrease
queuing and consequently turnaround times, which are shown in Figure 10.

Oracle-based dynamic allocation. Next, we gloss over prediction errors induced by a real statisti-
cal model and consider an ideal scenario from the load forecasting point of view. Ultimately, our
goal is to discern virtues and drawbacks of different preemption policies. Results are summarized
in Figure 11: each row corresponds to cluster resources, application turnaround and queue times,
whereas each column correspond to the optimistic or pessimistic preemption policy. Before proceed-
ing further, we clarify that our simulator implements the concept of work lost when an application
component is killed or crashes.

Overall, independently of the preemption policy, our results indicate that an ideal dynamic re-
source allocation mechanism brings substantial benefits in terms of all metrics we consider. Cluster
efficiency improves because resource slack, computed as the difference between allocated and used
resources, drastically shrinks as shown in Figure 11 (first row), and in comparison to Figure 10 (left).
Then, turnaround times are notably smaller as shown in Figure 11 (second row), and in comparison
to Figure 10 (left). Indeed, queuing times decrease, as shown in Figure 11 (third row), because the
system can quickly ingest new applications, since resource allocation follows utilization more closely.

Figure 11 can now be used to compare optimistic versus pessimistic eviction policies, in absence
of prediction errors. While both approaches improve over the baseline, the pessimistic policy we
introduce in this work is consistently superior to the optimistic in all respects. As shown in Figure 11
(first row), the pessimistic policy induces our dynamic allocation mechanism to follow very closely
application resource utilization: in this case, resource slack becomes negligibly small. This result
explains why turnaround times, Figure 11 (second row), are orders of magnitude smaller with the
pessimistic policy: by freeing up resources, the application scheduler is amened to trigger new exe-
cutions, and consequently queuing times in Figure 11 (third row) are very small for a vast majority of
applications. Furthermore, we compute the number of application failures: in case of the optimistic
policy we record 36.63% application failures, whereas with the pessimistic policy no application fails.
Indeed, with the optimistic policy, when two applications compete for resources and there are none
left, the system will let one of the two fail. Instead, the pessimistic policy avoid failures through
partial preemption, by freeing elastic resources first.

To summarize, this first set of results indicate that dynamic resource allocation is a viable approach in prin-
ciple, and provide an upper bound to which a system with a real statistical modeling approach should tend to.
Furthermore, our results indicate that, when factoring out intricate considerations about prediction errors, a
strict preemption policy is superior to an optimistic one, because results in no application failures.

GP-based dynamic allocation. Next, we study the system behavior when using GP regression to

Page 19 of 29

H2020-644182 RIA
31-12-2017 IOStack

CPU Memory
0.0

0.2

0.4

0.6

0.8

1.0

%
 R

es
o
u
rc

es

Cluster Resources
Allocation Utilization

CPU Memory
0.0

0.2

0.4

0.6

0.8

1.0

%
 R

es
o
u
rc

es

Cluster Resources
Allocation Utilization

FIFO-R FIFO-E
103

104

105

106

107

T
im

e
(s

)

Application Turnaround

FIFO-R FIFO-E
102

103

104

105

106

T
im

e
(s

)

Application Turnaround

FIFO-R FIFO-E
0

100

101

102

103

104

105

106

107

T
im

e
(s

)

Application Queue

(a) Optimistic

FIFO-R FIFO-E
0

100

101

102

103

104

105

T
im

e
(s

)

Application Queue

(b) Pessimistic

Figure 11: Comparison between an optimistic vs pessimistic approach over different metrics using
an oracle.

predict future resource utilization. As anticipated in Section 8, statistical models are prone to pre-
diction errors, which we address using a “safe-guard” buffer β. A key feature of our approach is
that β is a function of the uncertainty information produced by our Bayesian approach to regression.
In practice, when the predictor outputs a future (peak) resource utilization, we adjust the value by

Page 20 of 29

H2020-644182 RIA
31-12-2017 IOStack

0 20 40 60 80 100
Beta %

0

5

10

15

20

25

30

35
Ra

tio

Turnaround Oracle
Turnaround Predictor
Failures (%) Predictor
Memory Slack Oracle
Memory Slack Predictor

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 (%

)

Figure 12: Impact of the buffer parameter β.

adding the buffer β.
Since β is an important parameter, we first focus on a detailed analysis of its role. Figure 12 reads

as follows. On the x-axis we have β, which is the parameter we study. The first y-axis reports the ra-
tio (higher values are preferred) between the average turnaround obtained by a dynamic mechanism
vs. the baseline: we show both the upper bound obtained with an oracle, and the ratio obtained with
GP regression, as a function of β. The second y-axis reports the memory resource slack computed
as the difference between median resource allocation and utilization, both for an ideal system and
for a GP-based system, as a percentage (lower values are preferred). Finally, we also report an his-
togram accounting for the percentage (lower values are preferred) of application failures when using
a real system. This figure is also useful to overview the tension that exists between low values of
slack, indicative of system efficiency, and a small number of application failures, as discussed in the
introduction.

Figure 12 indicates that as β increases, the benefits in terms of improved turnaround due to
dynamic allocation fade away. Indeed, aggressive “safe-guard” buffer sizes correspond to gradu-
ally disabling the dynamic allocation: β = 100% corresponds to the baseline system, and obtains a
turnaround ratio of 1. As expected, as β increases, the resource slack also increases: indeed, resource
allocation becomes more conservative, and matches, in the limit, resource reservations.

It is important to observe the behavior of application failures as a function of β: Figure 12 reports
results for GP regression in conjunction with a pessimistic preemption policy. As β increases, the
failure rate decreases, because dynamic reallocation is more conservative: irrespectively of prediction
errors, a large “safe-guard” induces the system to prevent new applications to be admitted in the
system, which in turn decreases opportunities of modulating allocation. Although failed application
are resubmitted in the system, a good choice of β should prefer small failure rates.

Given our experimental settings, our analysis indicates β = 10% to be a reasonable value that we
use, as base10, throughout the remainder of this section.

We are now ready to study the main metrics we are interested in, and compare –with a real
statistical model – optimistic and pessimistic preemption policies, using Figure 13. We also compare
results to the ideal case, reported in Figure 11. As a general observation, we see that prediction

10This base value is adjusted according to the confidence output by the predict: base value + 3×standard deviation.

Page 21 of 29

H2020-644182 RIA
31-12-2017 IOStack

CPU Memory
0.0

0.2

0.4

0.6

0.8

1.0

%
 R

es
o
u
rc

es

Cluster Resources
Allocation Utilization

CPU Memory
0.0

0.2

0.4

0.6

0.8

1.0

%
 R

es
o
u
rc

es

Cluster Resources
Allocation Utilization

FIFO-R FIFO-E
103

104

105

106

T
im

e
(s

)

Application Turnaround

FIFO-R FIFO-E
103

104

105

106

T
im

e
(s

)

Application Turnaround

FIFO-R FIFO-E
0

100

101

102

103

104

105

106

T
im

e
(s

)

Application Queue

(a) Optimistic

FIFO-R FIFO-E
0

100

101

102

103

104

105

106

T
im

e
(s

)

Application Queue

(b) Pessimistic

Figure 13: Comparison between an optimistic vs pessimistic approach over different metrics using
an GP regression.

errors, and the parameter β play an important role, and result in slightly worse results. Figure 13
(first row) shows that resource slack cannot reach the ideal value of 0%. Furthermore, the difference
between a pessimistic and an optimistic preemption policy is less marked than in the ideal case.
Indeed, the “safe-guard” buffer has a positive effect for the optimistic policy, which achieves a similar

Page 22 of 29

H2020-644182 RIA
31-12-2017 IOStack

Gain - β=10% Gain - β=5%
95-th % 29% 38%
50-th % 30% 80%

Table 9.2a: Analysis of failed applications mistreatment. The table shows the gains in terms of
turnaround time, when using a pessimistic approach instead of an optimistic.

Figure 14: Implementation block diagram.

median slack to the ideal case. The pessimistic policy instead obtains a larger median slack than
in the ideal case, and this is due to estimation errors and the strict policy to allocate and deallocate
resources. Nevertheless, the pessimistic approach maintains the edge on all metrics, which are visible
in Figure 13: median values of resource slack, turnaround and queuing times are in favor of the
pessimistic policy. The resource slack is 10% lower while turnaround and queue time are orders of
magnitude better than the reservation centric baseline.

We conclude our analysis by focusing on application failures: our goal is to quantify the mistreat-
ment induced by preemption policies in terms of turnaround ratio. Table 9.2a reports the median
and 95-th percentile gain of the turnaround ratios computed between the baseline system (in which
no application fails) and the dynamic mechanism with the two preemption variants.11 In general, we
see a competitive advantage of the pessimistic policy, which becomes more prominent as a function
of β. Focusing on the column for β = 10%, the median turnaround of failed application handled by
a pessimistic policy is 30% better than that obtained with an optimistic one; the gain for the 95-th
percentile of failed application is 29%. When β = 5%, the dynamic allocation mechanism follows
more closely the real resource utilization, because the “safe-guard” buffer is smaller. In this case,
application failures are more prominent (see also Figure 12), and the gap between pessimistic and
optimistic policies widens, reaching up to 80% median and 38% 95-th percentile gains.

To summarize, our simulation results indicate that the approach we present in this work achieves substan-
tial gains with respect to a baseline. The GP regression model we advocate for achieves low error rates, and
its quantification of uncertainty is beneficial to adjust the value of the “safe-guard” buffer: indeed, results are
close to an ideal setup that uses an oracle to predict future utilization patterns.

10 System Implementation
We materialize the ideas presented in this work with a system implementation of the dynamic alloca-
tion mechanism, which we cast for the application scheduler [18, 44] we recently adopted to manage
our workload. We stress again that we focus on managing memory resources in particular.

Figure 14 shows the block diagram of such an implementation that is composed by three blocks:
11We compute two turnaround ratios, between the baseline and each variant. Then we report the difference, in percent-

age, between the two.

Page 23 of 29

H2020-644182 RIA
31-12-2017 IOStack

controller, predictor and preemptor. We assume the other modules (application scheduler, monitor
and back-end) to be part of the cluster management system as discussed in Section 8. Our imple-
mentation consist of few hundreds lines of Python code, because of simplicity and the availability of
machine learning libraries required for the predictor module.

Note that scalability can be an issue for a centralized system due to the computational complex-
ity of the predictor. However, a distributed solution can be easily engineered; since updating the
resource allocation is a task that must be done at the host level, all of our blocks (controller, predictor
and preemptor) can be deployed on each host.

We use Docker [8] as the back-end and we have investigated how to resize its containers (com-
ponents). There are two values that Docker uses to check for Memory limits: a hard and a soft limit.
When the hard limit is surpassed, the container is killed. Instead, when the soft limit is reached, the
OS tries to release some resources first. We opt to modulate resource allocation by adjusting the soft
limit value since the application scheduler we use takes decisions based on that value. However,
modifying the hard limit is a viable option as well. Changing the containers allocation is important
for the reasons briefly discussed in Section 8. In particular, we rely on the OS low level mechanisms
to notify the processes running in the container that they have to free some of their resources. This
practice is compatible with frameworks such as the Java Garbage Collector (GC) that attempts to
release allocated but unused memory space. Note that our technique is compatible with approaches
such as [27], which trade performance for a smaller memory footprint of applications.

Recall that our approach feeds the forecast module with data from the monitoring component at
regular time intervals. Frequent updates ultimately result in better system efficiency, as the predictor
operate on a high-fidelity view of resource utilization in the cluster. However, this might impose a
high toll in terms of monitoring scalability. On the other hand, infrequent updates improve scalability
at the expense of lower system efficiency and responsiveness. In our system, we collect resource
utilization information every minute, which is in line with what done in [4].

We now provide additional details of our system:

• Predictor. It implements the GP regression model described in Section 8.1 that predicts the
resource utilization of all application components running in the cluster using a history size of
10 points. We implement GP regression using the know library GPy [45]. Clearly, alternative
machine learning algorithms that can quantify predictive uncertainty can also be used.

• Preemptor. It materializes alg. 1 by performing, for each host, a simulation of the resource to
be allocated to application components given the information obtained from the predictor. This
component identifies the best allocation that prevents application failures, using a pessimistic
policy.

• Controller. It is responsible for coordinating all system modules. It is in charge of calculat-
ing the allocation for a specific application component given the predicted value and variance
obtained from the predictor. As discussed previously, the buffer β is set to compensate for pre-
diction uncertainty. The final task of the controller is that of issuing commands to preempt (kill,
in our system) an entire application, or individual components thereof, and to resize the allo-
cation, as computed by preemptor module. It is important to point out that the controller adapts
resource allocations only after enough historical data points are available for the predictor: we
call this a grace period. In our experiments, resource allocation matches resource reservations
for the first 10 minutes of an application lifetime.

11 Experimental Evaluation
We have deployed the system implementation in our cluster, which we operate using [44, 18]. Our
goal is to perform a comparative analysis between our dynamic allocation mechanism and a baseline,
reservation centric approach. In our experiments, we consider exactly the same workload trace on
both systems which takes approximately 24 hours from the first submission to the completion of the
last application.

Page 24 of 29

H2020-644182 RIA
31-12-2017 IOStack

Allocation Utilization
0

20

40

60

80

100

P
er

ce
n
ta

ge
 (

%
)

Memory
Baseline Dynamic

Baseline Dynamic
0

20

40

60

80

100

P
er

ce
n
ta

ge
 (

%
)

Memory Slack

E R
0

5000

10000

15000

20000

25000

30000

T
im

e
(s

)

Application Turnaround
Baseline Dynamic

Figure 15: Comparison of memory, memory slack and turnaround time distributions using the FIFO
discipline. Gray boxes correspond to the dynamic system. E stands for elastic and R stands for rigid
applications.

Workload. We use two representative application templates including: 1) an elastic application using
the Apache Spark framework; 2) a rigid application using the TensorFlow framework. Following the
trend of the traces used in Section 9, we set our workload to include 60% of elastic and 40% of
rigid applications, for a total of 100 applications. Application inter-arrival times follow a Gaussian
distribution with parameters µ = 120 sec, and σ = 40 sec, which is compatible with what we observe
in our cluster. Regarding the elastic application templates, we consider three use cases. First we
consider an application that induces a random-forest regression model to predict flight delays, using
publicly available data from the US DoT.12 Second we consider a music recommender system based
on the alternating least squares algorithm, using publicly available data from Last.fm13. Third we
consider an Extract, Transform and Load (ETL) application. All applications have 3 different flavors:
while they all have 3 core components, the number of elastic components varies depending on the
flavor. In terms of RAM, all flavors have different reservation values that span from 8GB to 32GB.
Instead, using the rigid application template, we train a deep GP model [46], and use a single-node
TensorFlow program, requiring 1 worker with 8-16-32GB of RAM depending on the flavor.
Experimental setup. We run our experiment on a isolated platform (which we use as testbed for
non-production systems) with ten servers, each with a 8-core CPU running at 2.40GHz, 64GB of
memory, 1Gbps Ethernet network fabric and two 1TB hard drives. The servers use Ubuntu 14.04
and Docker 17.09.0. Docker images for the applications are preloaded on each machine to prevent
container startup delays and network congestion.
Summary of results. Using the FIFO scheduling policy, we compare the two systems; baseline and
dynamic. Overall, the dynamic system is largely more efficient and responsive.

We measure substantial improvements in terms of resource allocation, as illustrated in Figure 15
(left): indeed our system can afford to ingest more applications, that would otherwise wait to be
served. Figure 15 (center) illustrates resource slack, which is roughly 40% lower with our dynamic
allocation mechanism.

As a consequence, applications spend less time in the application scheduler queue and have short
turnaround times, as shown in Figure 15 (right). The median turnaround times are ∼ 50% shorter,
for both elastic and rigid applications. Note also that the tails of the distributions are in favor of
our approach. Finally, we report that no application, nor component failed when using our dynamic
allocation mechanism, configured with the pessimistic preemption policy.

12http://stat-computing.org/dataexpo/2009/the-data.html
13http://www-etud.iro.umontreal.ca/~bergstrj/audioscrobbler_data.html

Page 25 of 29

http://stat-computing.org/dataexpo/2009/the-data.html
http://www-etud.iro.umontreal.ca/~bergstrj/audioscrobbler_data.html

H2020-644182 RIA
31-12-2017 IOStack

Part III

Conclusions
The emergence of “the data-center as a computer” paradigm has led to unprecedented advances
in cluster management frameworks, that aim at exposing distributed cluster resources as high-level
primitives to a variety of business-critical and scientific applications. However, the current resource
reservation model, based on estimated peak usage, causes over-provisioning and hinders an efficient
use of cluster resources.

The problem of under utilization has been addressed by several approaches. For example, the
design of economic incentives to steer system operation has led to the development of complex re-
source markets, e.g. AWS Spot instances, which calls for the design of failure tolerant applications,
due to the ephemeral nature of the resources they are offered.

The work presented in this deliverable completes tasks 5.2 (system deployment strategies, Zoe
Analytics) and 5.3 (System deployment tools). We use the monitoring information coming from task
5.1 (system performance monitoring) and the deployment system from task 5.2 to develop a software
module that implements strategies for optimizing analytics as a service deployments.

We presented Zoe Analytics, a project started in IOStack that is becoming successful in its own
right, and a software module that cooperates with it to dynamically adjust resources allocated to an
application, so that clusters can be used more efficiently, leading to immediate savings in terms of
hardware and energy.

The design of the resource allocation module features a method to build a statistical model to
forecast resource utilization, and a preemption policy that reallocates system resources while mini-
mizing failures. Both are contributions that have been implemented in Zoe, but are generic and can
be applied to other systems.

We have validated our mechanism numerically and with an experimental campaign based on the
Zoe implementation. The numerical simulations shed light on the key role played by our ability to
model and use prediction uncertainty, and by the use of strict preemption vs. optimistic concurrency
control. The real system implementation experiments indicate notably improved system efficiency,
which translates in better responsiveness.

Page 26 of 29

H2020-644182 RIA
31-12-2017 IOStack

References
[1] M. Babaioff, Y. Mansour, N. Nisan, G. Noti, C. Curino, N. Ganapathy, I. Menache, O. Reingold,

M. Tennenholtz, and E. Timnat, “Era: A framework for economic resource allocation for the
cloud,” in Proceedings of the 26th International Conference on World Wide Web Companion,
pp. 635–642, International World Wide Web Conferences Steering Committee, 2017.

[2] Y. Yang, G.-W. Kim, W. W. Song, Y. Lee, A. Chung, Z. Qian, B. Cho, and B.-G. Chun, “Pado: A
data processing engine for harnessing transient resources in datacenters,” in Proceedings of the
Twelfth European Conference on Computer Systems, pp. 575–588, ACM, 2017.

[3] J. Rasley, K. Karanasos, S. Kandula, R. Fonseca, M. Vojnovic, and S. Rao, “Efficient queue
management for cluster scheduling,” in Proceedings of the Eleventh European Conference on
Computer Systems, p. 36, ACM, 2016.

[4] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes, “Large-scale clus-
ter management at google with borg,” in Proceedings of the Tenth European Conference on
Computer Systems, p. 18, ACM, 2015.

[5] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes, “Omega: flexible, scalable
schedulers for large compute clusters,” in Proceedings of the 8th ACM European Conference on
Computer Systems, pp. 351–364, ACM, 2013.

[6] C. Curino, D. E. Difallah, C. Douglas, S. Krishnan, R. Ramakrishnan, and S. Rao, “Reservation-
based scheduling: If you’re late don’t blame us!,” in Proceedings of the ACM Symposium on
Cloud Computing, pp. 1–14, ACM, 2014.

[7] G. Ananthanarayanan, C. Douglas, R. Ramakrishnan, S. Rao, and I. Stoica, “True elasticity in
multi-tenant data-intensive compute clusters,” in Proceedings of the Third ACM Symposium
on Cloud Computing, p. 24, ACM, 2012.

[8] Docker, “Docker.” http://www.docker.com/, 2017.

[9] B. Hindman et al., “Mesos: A platform for fine-grained resource sharing in the data center,” in
Proc. of the USENIX NSDI 2011, NSDI’11, (Berkeley, CA, USA), pp. 295–308, USENIX Associa-
tion, 2011.

[10] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch, “Heterogeneity and dynam-
icity of clouds at scale: Google trace analysis,” in Proceedings of the Third ACM Symposium on
Cloud Computing, p. 7, ACM, 2012.

[11] J. Wilkes, “More Google cluster data.” Google research blog, Nov. 2011. Posted at
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html.

[12] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica, “Dominant re-
source fairness: Fair allocation of multiple resource types,” in NSDI, vol. 11, pp. 24–24, 2011.

[13] A. W. S. (AWS), “Elastic map reduce (emr).” https://aws.amazon.com/emr/, 2017.

[14] Apache, “Spark.” http://spark.apache.org/, 2017.

[15] Google, “Tensorflow.” https://www.tensorflow.org/, 2017.

[16] Y. Yan, Y. Gao, Y. Chen, Z. Guo, B. Chen, and T. Moscibroda, “Tr-spark: Transient computing
for big data analytics,” in Proceedings of the Seventh ACM Symposium on Cloud Computing,
pp. 484–496, ACM, 2016.

Page 27 of 29

H2020-644182 RIA
31-12-2017 IOStack

[17] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and M. Zhang, “Cherrypick: Adap-
tively unearthing the best cloud configurations for big data analytics,” in NSDI, pp. 469–482,
2017.

[18] F. Pace, D. Venzano, D. Carra, and P. Michiardi, “Flexible scheduling of distributed analytic
applications,” in CCGRID 2017, 17th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, May 14-17, 2017, Madrid, Spain, (Madrid, SPAIN), 05 2017.

[19] Apache, “Aurora.” http://aurora.apache.org/, 2017.

[20] A. Kuzmanovska, R. H. Mak, and D. Epema, “Koala-f: A resource manager for schedul-
ing frameworks in clusters,” in Cluster, Cloud and Grid Computing (CCGrid), 2016 16th
IEEE/ACM International Symposium on, pp. 80–89, IEEE, 2016.

[21] A. Kuzmanovska, R. H. Mak, and D. Epema, “Dynamically scheduling a component-based
framework in clusters,” in Workshop on Job Scheduling Strategies for Parallel Processing,
pp. 129–146, Springer, 2014.

[22] P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel, “Hawk: Hybrid datacenter schedul-
ing,” in USENIX Annual Technical Conference (USENIX ATC’15), pp. 499–510, 2015.

[23] P. Delgado, F. Dinu, D. Didona, and W. Zwaenepoel, “Eagle: A better hybrid data center sched-
uler,” tech. rep., Tech. Rep, 2016.

[24] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella, “Multi-resource packing for
cluster schedulers,” in ACM SIGCOMM Computer Communication Review, vol. 44, pp. 455–
466, ACM, 2014.

[25] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis, “Heracles: improving re-
source efficiency at scale,” in ACM SIGARCH Computer Architecture News, vol. 43, pp. 450–
462, ACM, 2015.

[26] M. Shahrad, C. Klein, L. Zheng, M. Chiang, E. Elmroth, and D. Wentzlaf, “Incentivizing
self-capping to increase cloud utilization,” in ACM Symposium on Cloud Computing 2017
(SoCC’17), Association for Computing Machinery (ACM), 2017.

[27] W. U. Hassan and W. Zwaenepoel, “Don’t cry over spilled records: Memory elasticity of data-
parallel applications and its application to cluster scheduling,” in USENIX Annual Technical
Conference (USENIX ATC 17), 2017.

[28] V. K. Vavilapalli et al., “Apache hadoop yarn: Yet another resource negotiator,” in Proc. of the
ACM SoCC 2013, p. 5, ACM, 2013.

[29] Docker, “Swarm.” https://docs.docker.com/swarm/, 2015.

[30] Google, “Kubernetes.” http://kubernetes.io/, 2017.

[31] P. Thinakaran, J. R. Gunasekaran, B. Sharma, M. T. Kandemir, and C. R. Das, “Phoenix: A
constraint-aware scheduler for heterogeneous datacenters,” in Distributed Computing Systems
(ICDCS), 2017 IEEE 37th International Conference on, pp. 977–987, IEEE, 2017.

[32] Y. Zhang, G. Prekas, G. M. Fumarola, M. Fontoura, Í. Goiri, and R. Bianchini, “History-based
harvesting of spare cycles and storage in large-scale datacenters,” in Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementation, OSDI’16, (Berkeley,
CA, USA), pp. 755–770, USENIX Association, 2016.

[33] S. Venkataraman, Z. Yang, M. J. Franklin, B. Recht, and I. Stoica, “Ernest: Efficient performance
prediction for large-scale advanced analytics,” in NSDI, pp. 363–378, 2016.

Page 28 of 29

H2020-644182 RIA
31-12-2017 IOStack

[34] G. Box, G. Jenkins, and G. Reinsel, Time Series Analysis, Forecasting and Control. Wiley Series
in Probability and Statistics, Wiley, 2008.

[35] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. MIT Press,
2006.

[36] D. J. C. MacKay, Information Theory, Inference & Learning Algorithms. Cambridge University
Press, 2003.

[37] E. Snelson and Z. Ghahramani, “Sparse gaussian processes using pseudo-inputs,” in
Proceedings of the 18th International Conference on Neural Information Processing Systems,
NIPS’05, (Cambridge, MA, USA), pp. 1257–1264, MIT Press, 2005.

[38] J. Quiñonero Candela and C. E. Rasmussen, “A unifying view of sparse approximate gaussian
process regression,” J. Mach. Learn. Res., vol. 6, pp. 1939–1959, Dec. 2005.

[39] A. Rahimi and B. Recht, “Random features for large-scale kernel machines,” in NIPS, 2007.

[40] K. Chalupka, C. K. I. Williams, and I. Murray, “A framework for evaluating approximation
methods for gaussian process regression,” J. Mach. Learn. Res., vol. 14, pp. 333–350, Feb. 2013.

[41] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin, “Efficient memory disaggregation with
infiniswap,” in NSDI, pp. 649–667, 2017.

[42] C. Reiss et al., “Google cluster-usage traces: format + schema,” technical report, Google Inc.,
Nov. 2011.

[43] Google, “Google Public Traces.” https://github.com/google/cluster-data, 2011.

[44] Eurecom, “Zoe-analytics.” http://zoe-analytics.eu/, 2015.

[45] Sheffield, “Gpy.” https://sheffieldml.github.io/GPy/, 2017.

[46] K. Cutajar, E. Bonilla, P. Michiardi, and M. Filippone, “Random feature expansions for deep
Gaussian processes,” in ICML 2017, 34th International Conference on Machine Learning, 6-11
August 2017, Sydney, Australia, (Sydney, AUSTRALIA), 08 2017.

Page 29 of 29

	I Zoe Analytics
	Zoe Analytics introduction
	Summary of progress
	Trademark and logo
	Kubernetes support
	Evolution of the user interface
	Industrialization, testing and CI

	Integration with Crystal
	Status of the open source project
	Planned releases and future road map

	II Dynamic resource allocation scheduler
	Introduction
	Reservation centric resource allocation
	Problem Statement

	Related Work
	System Design
	Time-Series Predictors
	Addressing Resource Conflicts

	Numerical Evaluation
	Methodology
	Simulation results

	System Implementation
	Experimental Evaluation

	III Conclusions

