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Executive summary

This deliverable presents Zoe, the system built to deploy analytics applications on distributed clus-
ters. Distributed analytics applications are taking more and more space in data centers all over the
world. Zoe provides the capability of executing analytics jobs, batch or interactive, in a simple way,
optimizing placement and resource usage.

In the first part of the document we describe the software implementation of Zoe, the motivations
behind its development and the interest it quickly generated in several well-known companies. In
the second part of the deliverable we present a novel approach to scheduling elastic applications and
its implementation in Zoe. Optimization objectives, the algorithms and the scheduling policies are
explained, together with the evaluation, performed with simulations and a prototype implementa-
tion.

Zoe plays a fundamental role in IOStack, by providing the scheduling and placement layer needed
to efficiently deploy analytic applications on top of the various storage solutions offered by the SDS
controller.
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Part I
Zoe: Analytics as a Service

1 History and motivations

Zoe was born in August 2015 as an open source project[1] to satisfy the need of having an easy
and integrated way to deploy distributed analytic applications on a cluster of physical or virtual
machines. Users can define analytic applications starting from a number of ready-made building
blocks, Zoe will schedule and deploy them matching resources requests and availability.

Zoe is developed in Python and is conceived as a thin layer that builds on top of an existing
low-level cluster management system, which is used as a back-end to provision resources to applica-
tions. Raising the level of abstraction to manipulate analytic applications is beneficial for users and
ultimately to the system design itself: application scheduling decisions can be taken with a small
amount of state information, and do not happen at the same (extremely fast) pace at which low-level
task scheduling does.

As such Zoe is not in competition with cluster management systems like Mesos or Kubernetes,
but builds on top of them (see section 3.2), to provide efficient application-level scheduling and a
more accessible user experience.

2 Zoe applications

Zoe schedules applications. Each application is made of one or more components, that are run each
in its own Linux container. For example, the Spark Notebook application that a user submits to Zoe
is made of one Jupyter Notebook[2, 3] component, one Apache Spark[4, 5] master and one or more
Apache Spark workers.

In order to produce useful work, in this case for the application to be useful to the user, there is
a core set of components that can be identified: the notebook, the master and just one worker. The
application can mark additional workers as “optional” (elastic in Zoe’s terminology). Zoe will start
them only if there are free and unused resources.

To simplify application descriptions and build a library of building blocks, an intermediate con-
cept of frameworks (groups of components that work together) has been introduced.

Zoe applications are described by users via a simple JSON description that follows a high-level
configuration language (CL) to specify applications, frameworks and components with their classes
(core or elastic), resource reservations and constraints. The CL is simple and extensible: it aims at
conciseness and, with framework templates, can be also used by “casual”, in addition to “power”
users. An example of the simplicity and effectiveness of the Zoe CL, building a batch application for
the distributed version of Tensorflow[6, 7], required less than 25 lines of CL.

A typical Zoe application description contains a number of application-global metadata items,
such as a name, a version (used for input format validation), size/priority! and others. Then it
contains a list of components, each with its own metadata, that includes:

* image: the Docker image location for the component

¢ environment: the environment variables that are used to configure the component
* volumes: external storage to mount inside the container

* resources: the resource reservations required to run one instance of this component
e total count: the total number of instances of this component that can be started

* essential count: the minimum number of instances (out of total count) required for the applica-
tion to produce useful work

I The size-based scheduler interprets this field as a size hint: the expected duration of the application in minutes. Part
of future work is building an automated size estimation module.
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Templates / app shop

Additional Zoe modules (they can be implemented as ZApps)
_______________________ |

Zoe
ZApp Zoe
scheduler rolling
(the current
scheduler)

upgrades

Container backend access layer

Container backend (RKT, Docker, Kubernetes)

Figure 1: Zoe high-level architecture.

Currently a number of scripts help users create these application descriptions, but we are plan-
ning and developing a web-based tool in the style of an app-shop where users are free to compose
and configure their own applications in a more intuitive way.

3 Implementation and architecture

Zoe has been implemented in Python, a language that provides a very fast development cycle, with
a rich library of ready-made components and an active community. Python has already been used to
build big, complex systems used in the industry: a good example being OpenStack.

At high level the architecture of Zoe can be seen in figure Fig. 1. Users interact with the system
by submitting application descriptions generated from a set of templates. These descriptions are
processed by the main Zoe processes and queued by the scheduler. When enough resources are
available, the applications are executed by generating appropriate API commands to the underlying
container back-end.

Optional modules can augment the capabilities of the Zoe application description language to:

¢ Expose functionality provided by advanced back-ends (high availability, fault tolerance, load
balancing)

¢ Build full workflow functionality on top of Zoe applications

* Perform maintenance operations on long-running applications, for example rolling upgrades
on a distributed storage cluster

More details on modules and back-end support are in sections 3.2 and 5
3.1 Internal architecture

Zoe is divided into two multi-threaded processes. The Zoe Master and the Zoe API. Both store state
information into an external Postgres database, that has well-known reliability and fault tolerance

Page 3 of 56



H2020-644182 RIA
31-12-2015 IOStack

characteristics.
Users interact with the Zoe API process. It offers the web interface and the REST AP], its main
task are:

* validate user application descriptions

* provide user interfaces to the state stored in the database

* perform clean-ups of terminated executions

* re-submit executions in case of crashes of the Master process

The Master process contains the scheduler and other threads to process various events. Its tasks
are:

* Schedule executions according to resource availability

* Monitor the container back-end for events that happen asynchronously from Zoe, for example
components that end (normally or because of an error) by themselves

* Record per-node free/busy resources
* Manage execution termination and save application logs

The two processes use a Zero-MQ based protocol, that has been developed using the Lazy Pirate
Pattern [8] to provide client-side communication reliability in the event of crashes or disconnections.

The Master and the API processes do not store any state internally and can be restarted at will in
case of upgrades or crashes without any consequence. The API process can be scaled horizontally
behind a http-based load balancer.

3.1.1 State

Three main tables are maintained in the state store, the platform table, the executions table and the
service table. In this context executions are instances of Zoe applications, while services are instances
of components.

The platform table stores information about the number of containers and the amount of free
resources for each node available in the cluster. This information is taken as-is from the back-end
API and stored into the database for caching reasons. Each entry describes the resources (memory,
cores and containers) free and total for one single node. Data is updated whenever the scheduler is
triggered.

Each entry in the execution table refers to a single application execution submitted by the user. It
records information such as:

* identifier of the user who submitted the application
* timestamps of submission, start and termination events
e current status (submitted, running, error, etc.)

* error message in case the execution failed due to an error

Each entry in the services table refers to a single instance of a component. As was explained in
the previous sections, application descriptions contain a list of component with total and essential
counts for each of them. These descriptions are exploded into the state table in as many services as
is the total number of instances requested. The information recorded for each instance is:

e status: the service status from Zoe point of view

* backend status: the container status from the back-end point of view
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* backend identifier: the unique ID the back-end uses to identify this container
* service group: the component name as given into the application description

* error message: filled in when there is an error during the container lifetime (for example image
not found of out-of-memory termination)

3.1.2 Scheduling and placement

The scheduler thread is triggered by several events:
¢ an execution being added to the scheduling queue
* an execution that terminates, either by itself (batch) or by the user
¢ a timer, to account for resources that are used outside of Zoe’s control.

When the scheduler is triggered and selects an application execution to start, according to the
configured policy, it performs a placement simulation, trying to find the best fit of core and elastic
services in order to maximize the number of running executions. Executions for which all core ser-
vices cannot be started at the same time are left in the queue, in order to start only executions that
can produce useful work.

The queue is ordered according according to the policy chosen by the administrator. The stable
version of Zoe (0.10.x) implements a FIFO policy with back-filling, where all executions are started
in order of arrival and if there are not enough resources for an execution, it is put back at the end of
the queue.

We implemented also strict FIFO and size-based policies, that take into account the elasticity of
Zoe applications. A detailed explanation, with experimental results, is available in part II of this
deliverable.

These policies are currently available in an experimental branch. They will be released in the
stable branch in the next few months, after internal interfaces and administration tools are updated
to support the new policies.

The placement simulation uses a simple filter-and-sort algorithm. For each container to be placed
it filters out nodes that do not match the required resource constraints (amount of memory, but also
special hardware needs can be taken into account). The container will be placed in the node with the
least amount of running containers and the biggest amount of free memory.

The same filter-and-sort algorithm is used to take placement decisions in most modern cluster
manager systems, like OpenStack Nova and Docker Swarm.

3.2 Back-ends

The main design idea of Zoe is to hide the complexities of low-level resource provisioning from ap-
plication scheduling and use an existing cluster management system, for which many alternatives
exists, instead. Historically, Zoe builds on top of Docker Swarm and uses it for orchestration, depen-
dency management, resource isolation, naming and networking.

As part of Zoe’s roadmap we have planned to expand the number of supported backends, adding
RKT, Docker Engine and Kubernetes. Mesos also is a possibility that we will evaluate during the next
year.

As can be seen in figure 1, together with support for new back-ends, a number of additional
(and optional) Zoe components will be developed and released. These components will expose to
Zoe applications the capabilities offered by more advanced back-ends, such load balancing and fault
tolerance.

4 User interaction

Users can interact with Zoe through a web interface or a command-line tool. The web interface
provides a high level overview of the application executions for each user and their status. The
command-line tool is more advanced and, for example, can be used to script the execution of multiple
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batch applications, creating simple automated workflows. Zoe has also a REST client API that is
being used by our external partners to develop additional tools and services.

When an application is submitted, via REST, command-line or web interface, Zoe creates an entry
in the application state store, and adds it to a pending queue. The scheduler strives to making sure
the application selected for execution can make progress as soon as resources are allocated to it:
to this end, it relies on the back-end to place all core components according to the simulated plan.
Elastic components are scheduled when possible and contribute to decreased application run-time.
As a consequence, batch applications (either rigid like Tensorflow or MPI, or elastic such as Spark)
can make progress as soon as core components start; similarly, interactive applications — which can
be given precedence to reduce queuing times and improve user experience — can also start being used
even if not all elastic components (if any) are scheduled. See section 9 for more details.

5 Road Map

The future of Zoe has been planned along two main directions: one is academical research and the
other is industrialization, in collaboration with our partners (see section 6.2. Zoe is a strong and
innovative project that in just one year of development has seen a lot of positive feedback that helped
focus its scope. The roadmap described below is the result of many meetings, in person, on the phone
and via the Internet and a substantial work of summarization. IOStack will benefit from all the points
described below.

5.1 Research topics

Here we describe general research topics that can be studied with the help of Zoe, where internal
components can be easily swapped with experimental ones, in the same way as the elastic scheduler
described in part II of this document has been created.

5.1.1 Scheduling

The new scheduler described in part II, with full support for elastic applications, opens up several
very interesting research topics, described below.

Scheduling policies Currently Zoe supports only three scheduling policies (six with non-elastic
variants):

e Strict FIFO
¢ FIFO with backfilling
¢ SRPT (without preemption)

There are many policies, each with multiple variants, described in the literature for traditional
schedulers, that can be applied to the concept of elastic applications. One example that we find
particularly relevant for analytics applications is deadline scheduling, where the user specifies a time
window (or a latency for streaming jobs) in which the job must be completed. If the system cannot
satisfy the request it can try preempting other jobs with lower priority to free additional resources.

Size estimation Size estimation plays a fundamental role in all size-based scheduling policies. The
current study leaves the task of estimating sizes to an external module, not specified. This research
topic will explore the strategies that can be used to estimate job size, off-line and on-line, and the
consequences of estimation errors in the quality of the final scheduling. The EUR research team has
already important works published in this domain[9, 10, 11].

Preemption All advanced scheduling policies need some form of preemption to dynamically free
resources. Here interesting research topics include which processes to preempt and how to preempt
them, by killing and potentially losing valuable work already done, or by checkpointing and saving
the process state, at the cost of higher latency?
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5.1.2 Dynamic resource allocation

In all modern virtualization systems there is the concept of resource reservations: when a user re-
quests a virtual machine or a container, she has to specify the amount of memory, disk and cores to
reserve. These reservations are used to take placement decisions in cluster managers, but in reality
we observe on the EUR cluster that the effective resource usage is much lower than the reservation,
in the general case.

Dynamic resource allocation would use real resource usage to take placement decisions, instead
of a user-provided reservation. The biggest challenge is how to react quickly enough when, for
example, a process makes a big memory allocation and the node on which it is running is already
full.

5.2 Industrialization

The Zoe deployments in Air France and KPMG (see section 6.2) have highlighted a number of fea-
tures where further development will enhance the usefulness of Zoe in the industrial setting.

5.2.1 Standard distributions
Zoe depends on a number of technologies that can be easily exchanged according to the scale of the
deployment, high availability requirements, etc. These are:

* Virtualization back-end

 State store

* Monitoring and logging pipeline

* Shared filesystem

We are planning three main “Zoe Distributions” that will come with full installation instructions:

1. demo: can be installed on a laptop and showcases Zoe and a few very simple analytics appli-
cations

2. basic: for small deployments that have no particular needs in terms of data retention or fault
tolerance

3. advanced: for enterprise-grade deployments

Each of these distributions will be mostly in the form of documentation and scripts. They will
explain and, whenever possible, automate the installation of the set of software dependencies for
Zoe more suited for the deployment. For example in the demo distribution a simple non-distributed
Docker engine will be used as the virtualization backend, while in the advanced distribution Kuber-
netes will be proposed.

5.2.2 User interfaces

As in any software, the user interface is the most visible component of Zoe and, as such, it received
the biggest number of suggestions for new features and improvements.

Application builder We are planning a Zoe web application builder that will let users manage and
build Zoe applications quickly and easily. This builder will have two main areas, that can be enabled
or disabled at install time. One area will be an app-store like interface with ready-made applications
built by system administrators, where users cannot change any system-related option. The other area
will be dedicated to “power users”: they will be able to compose frameworks (pre-packaged building
blocks) together, set memory limits and, in general, access lower-level options.
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Web interface The new Zoe web interface will cover three main user types:

¢ Administrator: this section of the interface gives access to administrative tools to monitor the
activity of the whole Zoe system and the applications running in it. In this area there are also
tools for user administration and access control, settings related to the scheduler policies, etc.

* Normal user: a normal user can only start, stop and monitor its own executions

* Advanced analytic user: with this interface we want to offer a very different approach, to target
the way data scientists usually work. With this interface it will be possible to create workflows,
define pre-processing and post-processing steps and reason in terms of data and operations to
perform on them.

5.2.3 Advanced back-ends and long running applications

Currently Zoe supports only Docker Swarm as a container backend. Adding support for more back-
ends will let Zoe users define more complex applications (or run Zoe on a single laptop).
We are planning support for:

* Docker Engine: a single PC can be used as the Zoe backend. It comes almost for free since the
APl is almost the same as the Swarm one. Very useful for demos, development environments
and for running small Zoe applications on the go.

e Kubernetes: for large deployments, where long running applications (i.e. a data layer like
HDFS) have to be managed with rolling upgrades, load balancing and fault tolerance. Zoe can,
through dedicated modules, expose the functionality already available in Kubernetes to high
level Zoe applications.

5.2.4 Authentication and user management

Companies run a large number of different authentication and authorization suites. KPMG already
built upon the existing LDAP support, contributing Kerberos and OpenAuth modules for Zoe.

We expect to have more schemes supported, together with the necessary administration interfaces
to manage users, groups, capabilities and quotas.

6 I0Stack and the Zoe community
6.1 Zoe and IOStack

IOStack promotes the separation of compute and storage layers allowing increased flexibility in meet-
ing the variable demand of computation resources, while keeping the data storage system in a stable
state. Zoe targets the compute layer of IOStack, by providing a simple way to define and deploy
arbitrary analytic applications.

Zoe has been integrated into the IOStack dashboard to give users a single point of access to all
IOStack services. Zoe applications can use the storage services offered by the other IOStack compo-
nents directly (Swift) or through the back-end (volumes). In the last year of the project we envision
an even tighter integration with information flowing from the Zoe scheduler to the SDS controller
and vice-versa, opening the possibility of automatically taking informed decisions about application
scheduling and storage features at run-time.

6.2 Community and partners

Since its beginning in August 2015 Zoe has generated interest in the industry. We have contacts
and ongoing discussions with a number of companies and public entities. People feel the need of a
simpler interface on top of existing virtualization solutions that lets them concentrate on the problems
they face, typically data analysis, and forget all about the lower layers of resource management,
networks and virtualization.

Below we go into the details of the two major collaborations we have started thanks to Zoe.
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6.2.1 Air France

Air France started experimenting with the earlier prototypes already at the end of 2015, providing
bug reports, insights and improvement suggestions. They officially adopted Zoe in September 2016
for running applications for their data analysis teams located in Paris and Amsterdam. During one
of the meetings with Air France, they reported that the data scientists involved are enthusiastic of
Zoe and the ways they are able to work with it.

Air France is currently keeping a private fork of Zoe and having internal discussions on how to
contribute their changes into the public repository. In the meantime they keep providing feedback
and suggestions to make Zoe more attractive to production deployments in the industry.

6.22 KPMG

After evaluating Zoe, Mesos and Kubernetes, KPMG decided to invest in Zoe to make it the primary
software product used to deploy their services for all their customers. In September 2016, KPMG
hired two software engineers that work full-time on Zoe, in strict collaboration with Eurecom. We
have established a collaboration contract and are in the process of writing a shared project specifica-
tion that will set priorities and assign tasks to developers.
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Part 11
Analysis of FIFO and size-based scheduling
policies

7 Introduction

The last decade has witnessed the proliferation of numerous distributed frameworks to address a
variety of large-scale data analytics and processing projects. First, MapReduce [12] has been intro-
duced to facilitate the processing of bulk data. Subsequently, more flexible tools, such as Dryad [13],
Spark [14], Flink [15] and Naiad [16], to name a few, have been conceived to address the limitations
and rigidity of the MapReduce programming model. Similarly, specialized libraries [17] and systems
like TensorFlow [6] have seen the light to cope with large-scale machine learning problems. In ad-
dition to a fast growing ecosystem, individual frameworks are driven by a fast-pace development
model, with new releases every few months, introducing substantial performance improvements.
Since each framework addresses specific needs, users are left with a wide choice of tools and combi-
nation thereof, to address the various stages of their projects.

The context depicted above has driven a lot of research [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31] in the area of resource allocation and scheduling, both from academia and the industry. These
efforts materialize in cluster management systems that offer simple mechanisms for users to request
the deployment of the framework they need. The general underlying idea is that of sharing cluster
resources among a heterogeneous set of frameworks, as a response to static partitioning, which has
been dismissed for it entails low resource utilization [18, 19, 20]. Existing systems divide the resources
at different levels. Some of them, e.g. Mesos and YARN, target low-level orchestration of distributed
computing frameworks: to this aim, they require non-trivial modifications of such frameworks to
operate correctly. Others, e.g. Kubernetes [32] and Docker Swarm [33], focus on provisioning and
deployment of containers, and are thus oblivious to the characteristics of the frameworks running
in such containers. To the best of our knowledge, no existing tool currently addresses the problem
of scheduling analytic applications as a whole, leveraging the intrinsic properties of the frameworks
such applications use, but without requiring substantial modification of such frameworks.

The endeavor of this work is to fill the gap that exists in current approaches, and raise the level of
abstraction at which scheduling works. We introduce a general and flexible definition of applications,
how they are composed, and how to execute them. For example, a user application addressing the
training of a statistical model involves: a user-defined program implementing a learning algorithm,
a framework (e.g., Spark) to execute such a program together with information about its resource
requirements, the location for input and output data and possibly hyper-parameters exposed as ap-
plication arguments. Users should be able to express, in a simple way, how such an application must
be packaged and executed, submit it, and expect results as soon as possible.

We show that scheduling such applications represents a departure from what has been studied
in the scheduling literature, and present the design of a new algorithm to address the problem. A
key insight of our approach is to exploit the properties of the frameworks used by an application,
and distinguish their components according to classes, core and elastic: the first being required for
an application to produce work, the latter contributing to reduced execution times. Our heuristic
focuses cluster resources to few applications, and uses the class of application components to pack
them efficiently. Our scheduler aims at high cluster utilization and a responsive system. It can easily
accommodate a variety of scheduling policies, beyond the traditional “first-come-first-served” or
“processor sharing” strategies, that are currently used by most existing approaches. We study the
performance of our scheduler using realistic, large-scale workload traces from Google [34, 35], and
show it consistently outperforms the existing baseline approach which ignores component classes:
application turnaround times are more than halved, and queuing times are drastically reduced. This
induces fewer applications waiting to be served, and increases resource allocation up to 20% more
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than the baseline.

Finally, we present a full-fledged system, called Zoe, that schedules analytic applications accord-
ing to our original algorithm and that can use sophisticated policies to determine application pri-
orities. Our system exposes a simple and extensible configuration language that allows application
definition. We validate our system with real-life experiments, and report conspicuous improvements
when compared to a baseline scheduler, when using a representative workload: median turnaround
times are reduced by up to 37% and median resource allocation is 20% higher.

In summary, the contributions of our work are as follows:

* We define, for the first time, a high-level construct to represent analytic applications, focusing
on their heterogeneity, and their end-to-end life-cycle;

* We establish a new scheduling problem, and propose a flexible heuristic capable of handling
heterogeneous requests, as well as a variety of scheduling policies, with the ultimate objective
of improving system responsiveness under heavy loads;

* We evaluate our scheduling policy using realistic, large-scale workload traces and show it con-
sistently outperforms the baseline approach;

* We build a system prototype which materializes the ideas of analytic applications and their
scheduling. Our system has been in use for over one year, serving a variety of analytic applica-
tion workloads. Using our new heuristic, we were able to achieve substantial improvements in
terms of system responsiveness and cluster utilization.

We start by clarifying what analytic applications are, give examples and formulate our problem
statement in Section 8. We then describe the details of our flexible scheduling heuristic, in Section 9,
which we evaluate using simulations in Section 10. The system implementation is described in Part I,
and its evaluation is presented in Section 11. Finally, in Section 12 and Section 13 we discuss related
work and conclude, hinting at our current research agenda.

8 Definitions and Problem statement
8.1 Definitions

We define a data analytics framework as a set of one or more software components (executable
binaries) to accomplish some data processing tasks. Distributed frameworks are generally composed
by a controller, a master and a number of worker components. Examples of distributed frameworks
are Apache Spark [5], Google TensorFlow [7] and MPI [36]. Another example of simple data analytics
framework we consider is an interactive Notebook [2].

Distributed frameworks require a scheduler to orchestrate their work: they execute jobs, each of
which consists of one or more tasks that run in parallel the same program. Such schedulers operate
at the task level: they assign tasks to workers, and they are highly specialized to take into account
the peculiarities of each framework.

Framework schedulers such as Mesos [18] and Yarn [31] introduce an additional scheduling com-
ponent to share cluster resources among concurrent frameworks: sharing policies are based on sim-
ple variations of Processor Sharing. Similarly, cluster management systems such as Docker Swarm
[33] and Kubernetes [32] use a scheduler that assigns resources to generic frameworks. The problem
to solve is the efficient allocation of resources by placing framework components and their tasks on
cluster machines that satisfy a set of constraints.

We are now ready to define analytics applications, which are the elements we schedule in our
work. Our main objective is to raise the level of abstraction by manipulating an abstract entity en-
compassing one or more analytics frameworks, their components and the necessary logic for them
to cooperate toward producing useful work by running user-defined jobs. What sets apart our work
from the state of the art is that our scheduler takes into account the notion of component classes,
which allows modeling the specificity of each framework. We have found two distinct component
classes to be sufficient to model existing analytic frameworks: thus, framework components either
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belong to a core or to an elastic class. Core components are compulsory for a framework to pro-
duce useful work; elastic components, instead, optionally contribute to a job, e.g. by decreasing its
runtime?. Consider, for example, Spark. To produce work, it needs some core components: a con-
troller (the spark client running the DAG scheduler), a master (in a standalone deployment), and
one worker (running executors). We treat additional workers as elastic components. An alternative
example is an application using TensorFlow, which only works with core components: one or more
parameter servers and a number of workers. These two frameworks have substantially different
runtime behavior: Spark is an elastic framework that can dynamically integrate workers to dispatch
tasks. TensorFlow is rigid, and uses only core components to make progress.

To summarize, the nature of an application is that of raising the level of abstraction and an
application is considered as being a collection of frameworks and their heterogeneous components
as a single entity to schedule and allocate in a cluster of computers.

8.2 Problem Statement

We now treat the applications defined above as abstract entities that we call requests: they include
one or more components, which belong to a given class, either core or elastic. In the literature,
the classical problem of scheduling generic requests to be served by a distributed system has been
extensively studied [37, 38, 39]. Requests composed solely by core components are usually referred
to as rigid, while requests composed solely by elastic components are referred to as moldable (if the
assigned resources are decided when the request is served and they do not change for the whole
execution) or malleable (if the resources can vary during the execution®). A key difference with
respect to previous work is that we consider heterogeneous requests, composed by both core and
elastic components.

For simplicity of exposition, we assume system resources that can be measured in units, and that
there are R available units overall to satisfy the requests. Each request i specifies the amount of units
for its core and elastic components, labeled C; and E; respectively. Ideally, with enough available
resources, a request is allocated all of its components: in this case, we define the service (or execution)
time as T;. The amount of work to satisfy a request is the area of the square W; = T; x (C; + E;).
More generally, a request is allocated at least C; + x;(t) resources, where 0 < x;(tf) < E;. Then,
the service time is T/ = C,%Z(t) This simple model allows updating the service time T/ when a
scheduling decision modifies x;(t), by measuring the amount of work accomplished so far, and by
computing the remaining amount of work to be done. While more complex models to describe T/
can be conceived, for example taking into account the multi-dimensional nature of system resources,
our simple approximation doesn’t affect the nature of the scheduling problem we are studying.

Essentially, the problem of scheduling the execution of an incoming workload of requests amounts
to: i) sorting requests to decide in which order to serve them; ii) allocating distributed resources to
requests selected for service. The sorting phase can be solved using naive approaches, e.g. FIFO
ordering, or more sophisticated policies, that use request size information. Even more generally, re-
quests can be placed into “pools” and be assigned priorities, to mimic the hierarchical organization of
the users, for example. The allocation phase is more tricky: in the abstract, it is a “packing” problem
that has to decide how to shape requests being served. Even assuming service times to be known
a-priori (e.g., T; is given as an input), it is well known that the on-line scheduling problem is NP-hard
[37]. Therefore, we need to find a suitable heuristic to approximate a solution to the scheduling op-
timization problem. In our case, it amounts to minimizing the application turnaround times, which
is the interval of time between request i submission and its completion. In the context we consider,
optimizing the average turnaround time represents a meaningful performance metric, as it caters
system responsiveness. Next, we motivate our problem with a simple illustrative example.

2We currently assume that the contribution of elastic components is linear; this might not always be the case depending
on the load of the system and the elasticity defined by the user. For now we trust that the user will correctly build her
application without adding elastic components that will not be used. We plan to tackle this problem in our future work.

3 An example of malleable framework is Spark[4]. Worker can be added or removed without destroying the application
execution.
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Illustrative example. We consider a system with 10 available resource units, and four requests wait-
ing to be served, as shown in Figure 2. Each request needs 3 units for the core components, and
different units for the elastic components. For each request, T; = 10.

4 C=3 | C=3 | C=3 | C=3
E=4 | E=3 | E=5 | E=2
T=10| T=10|| T=10|| T=10
resources
I R ERREEEEEEEEEEEEEEEEEE Baseline, rigid
approach
5
£ time
(s)
10 30 40
Tresources
10 e Malleable
approach
5 _____________
time
©®
40
Tresources
10 prrm e ey - - - - < < - - - - ] Our flexible
approach
s B B,
time
i ()
10 15 23.57 28.43 40

Figure 2: Illustrative examples of request scheduling: (top) rigid, (middle) malleable, (bottom) flexi-
ble approaches.

Given these requests, a traditional, rigid approach to scheduling — which does not make the dis-
tinction between component classes — assigns all required resources to each request. Since all requests
need at least 5 units (C; + E; > 5), and since any pair of requests have an aggregated need that ex-
ceeds 10 units, the scheduler serves one request at a time (Figure 2, top): the average turnaround time
is 25s. Note that, in this case, backfilling is not possible, i.e., even by changing the order in which
requests are served the situation does not change.

Another scheduling approach comes from the literature of malleable job scheduling. The sched-
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uler assigns all resources to the first request in the waiting line, then assigns the remaining resources
(if any) to the next request, and so on, until no more free resources are available. This heuristic has
been shown to be close to optimal [38]. Figure 2, middle, illustrates the idea: request B can be served
along with request A. When request A has completed, the scheduler first assigns more resources to
request B, and then tries to serve the next request. Similarly, when request B has completed, the
scheduler first assigns more resources to request C, then attempts at serving request D. However,
since request D needs at least C; = 3 units, the scheduler is blocked (note that request C uses 8 units),
so request D needs to wait, and some system resources remain unused. The average turnaround time
is 20s.

In this work we advocate the need for a new approach to scheduling, which distinguishes com-
ponent classes. The idea is to exploit the flexibility of elastic components and use system resources
more efficiently. Intuitively, a solution to the problems of existing heuristics is to reclaim some re-
sources assigned to elastic components of a running request and assign them to a pending request.
This is shown in the bottom of Figure 2: the scheduler reclaims just one unit from request C so that
it can provide 3 units to request D, which are sufficient for starting its core components and produce
useful work. With this approach, the average turnaround is 19.25s.

While the above solution seems simple, it poses many challenges: how many units assigned to
elastic components can be sacrificed for serving the next request? How many requests should be
served concurrently? Should the scheduler focus on core components alone, to make sure many
requests are served concurrently? How can scheduling take into account the priorities assigned by
the sorting phase?

The last point introduces an additional challenge, related to preemptive scheduling policies. If a
high priority request arrives, since it is not possible to interrupt core components — for this would kill
the request — how can we select and preempt elastic components to accommodate the new request?

Given heterogeneous, composite requests, which are neither rigid, nor malleable (but both),
available scheduling heuristics in the literature fall short in addressing the sorting and allocation
problems: a new approach is thus truly desirable.

9 A Flexible Scheduling Algorithm
9.1 Design guidelines

We characterize a request by its arrival time, its priority (to decide the order in which the requests
should be served), the resources it asks for (core and elastic) and the execution time (in isolation, i.e.,
when all required resources are granted to the application). Given an incoming workload, our goal
is to optimize the sum of the turnaround times 7, that is:

min ) 7; = min ) _(queuing; + execution;)
1 1
The actual execution time depends on the amount of resources assigned over time to the request.
Now, recall that the scheduling problem can be broken into sorting and allocation phases. Sorting
determines when a request is served, thus it has an impact on its queuing time. The allocation phase
contributes both to queuing and actual execution times. Depending on allocation granularity [19], a
request might need to wait for a number of resources to be available before occupying them, thus in-
creasing — albeit indirectly — the queuing time. The execution time is directly related to the allocation
algorithm and to the workload characteristics.

In this work we decouple request sorting from allocation:* our scheduler maintains the request
ordering, as imposed by an external component, and only focuses on resource allocation. Sorting can
be simply based on arrival times (which amounts to implement a FIFO queuing discipline), or can use
additional information, such as request size (thus implementing a variety of size-based disciplines).

Overall, we optimize request turnaround times through careful resource allocation, and design
an algorithm that strives at allocating all available cluster resources, by serving the least number of

4This approach is similar to the one used in the SLURM scheduler [40], where the order of the pending jobs is given by
an external, pluggable, component, and the scheduler processes the jobs following that order.
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requests at a time. Intuitively, by “focusing” resources to few requests, we expect their execution
times to be small. Consequently, queued requests also enjoy smaller wait times, because resources
are freed more quickly.

9.2 Algorithm Details

Although we support preemptive scheduling policies, to simplify exposition, we first consider the
case with no preemption: resources assigned to a request can only increase, and a new request can
be placed, at most, at the head of the waiting line, depending on the sorting component. We stress
that the output of our scheduling algorithm is a virtual assighment, i.e., the mechanism to physically
allocate resources according to the computed assignment (core and elastic components for running
applications) is separate from the scheduling logic, and considered as an implementation detail.

Our resource allocation procedure is called REBALANCE, and it is triggered by two events: request
arrivals and departures — see Algorithm 1, ignoring highlighted lines. When a new request arrives
(procedure ONREQUESTARRIVAL), the resource assignment is done only if such a request is placed
at the head of the waiting line and there are unused resources that are sufficient for running its
core components. When a request is completed (procedure ONREQUESTDEPARTURE), the released
resources are always reassigned.

The scheduler maintains two ordered sets: the requests waiting to be served (£), and the requests
in service (S). Each request req needs req.C core components and req.E elastic components; depend-
ing on the allocation, request req is granted 0 < req.G < req.E elastic components. The core of the
procedure REBALANCE (lines 27-30) operates as follows: each request req in the serving set S has
always at least req.C resources assigned. Excess resources are assigned to the requests in S following
the request order. The scheduler assigns as many elastic components as possible to the first request,
then to the second, and so on, in cascade.

Following the design guidelines, the set S should only contain the requests that are strictly nec-
essary to use all the available resources. This is accomplished by the first part of the procedure
REBALANCE (lines 17-22): a request is added to S if the current requests in S are not able to saturate
the total resources (total, line 17). Note that we add a request to S only if there is room to allocate all
of its core components.

9.3 Preemptive policies

We now consider preemptive policies: request arrivals can trigger (partial) preemption of running
requests, e.g. if new requests have higher priority than that of the last request in service. In this case,
the tuple describing a request also stores its priority, req.P. It is important to note that, in this work,
the preemption mechanism only operates on elastic components of running applications, whereas
core components (that are vital for an application) cannot be preempted.

The highlighted lines in Algorithm 1 show the modifications to the procedures ONREQUESTAR-
RIVAL and ONREQUESTDEPARTURE to support preemption. When a new request arrives, if its prior-
ity is higher than the requests in service, we check if its core components can be allocated using the
resources occupied by the elastic components of currently running requests. If so, we insert the re-
quest into the set S and call REBALANCE. Otherwise, we insert the request into an auxiliary waiting
line W, which is given priority when resources become available. Indeed, procedure ONREQUEST-
DEPARTURE indicates that we first consider the waiting requests in 1V, and we add to the set S as
many of them as possible, considering solely the core components. In other words, requests in W
have higher priority than those in £. Finally, the call of REBALANCE assigns the remaining resources
to the elastic components of high priority requests.

10 Numerical evaluation
10.1 Methodology

We evaluate our algorithm using an event-based, trace-driven discrete simulator developed to study
the scheduler Omega [19], which we extended in order to make it work with applications, instead
of low-level jobs and to use the concept of component classes. Our scheduler implementation sup-
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Algorithm 1: Resource assignment procedures

1
2
3

12
13

14

15

16
17

18
19

20
21
22

23

24
25

26
27
28
29
30

procedure ONREQUESTARRIVAL(req)

if req.P > S.tail.P then
if req.C < E req;.E then
jes
INSERT(req, S)
REBALANCE()
else
| INSERT(req, W)

else
INSERT(req, L)
if req == L.head and req.C < avail then
| REBALANCE()

procedure ONREQUESTDEPARTURE()

jes
| INSERT(POP(W), S)
| REBALANCE()

procedure REBALANCE()
while Y (req;.C + req;.E) < total and (£ not @) do
jeS
req < L.head
if reg.C + Y req;.C < total then
jes

| INSERT(POP(L), S)
else

| break

avail < total — ) _ req;.C
jes
forall the req € S do
| 7eq.G 0

req < S.head

while avail > 0 and (req not NULL) do
req.G < min(req.E, avail)
avail < (avail — req.G)
req <— req.next

while W.head.C + Y req;.C < total and (VW not @) do
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ports a variety of policiessz we present results for the FIFO and the shortest job first (SJF) policies,
which further optimizes system responsiveness. Our implementation first obtains a “virtual assign-
ment” with Algorithm 1, then fulfills it by allocating resources accordingly, which happens instan-
taneously. Additionally, we have implemented a baseline, consisting of a rigid scheduler that does
not distinguish component classes, which is representative of current cluster management systems.
In our simulations, we consider two-dimensional resources, including definitions of CPU and RAM
requirements. We would like to stress that the “virtual assignment” can take into consideration other
constraints as well (e.g., GPU).

Our scheduler currently accepts application workloads of two kinds. The first is batch applica-
tions, that take from a few seconds to a few days to complete: these are delay-tolerant applications,
with a very simple life-cycle. Core components must first start to produce useful work, by executing
user-defined jobs that are “passed” to the application; eventually, elastic components can contribute
to the application progress. Once the user programs are concluded, the application finishes, releas-
ing resources occupied by its frameworks and components. The second is interactive applications,
which involve a “human in the loop”: these are latency-sensitive applications, with a life-cycle trig-
gered by human activity. In this case, core components must start as soon as possible, to allow user
interaction with the application (e.g., a Notebook).

For our performance evaluation, we use publicly available traces [35, 34], and generate a work-
load by sampling the empirical distributions we compute from such traces. First, we focus on batch
applications alone, and simulate both rigid (e.g. TensorFlow) and elastic (e.g. Spark) variants: the
label B-R represents rigid applications with only core components; the label B-E stands for elastic
applications, with both core and elastic components. Then, we evaluate the benefit of preemption by
complementing the above workload with (simulated) interactive applications.

Figure 3 shows the definition of the workload: in particular we can see the CDFs for requested
CPU and memory, then the inter-arrival time and estimated run time and finally, the number of core
and elastic components. Batch applications are assigned a number ranging from a few to tens of
thousands of components. Instead, interactive applications are smaller, and use up to hundreds of
elastic components. The resource requirements of application components follow that of the input
traces, ranging from few MB to a few dozens GB of memory, and up to 6 cores. Application runtime
is generated according to the input traces, and range from a few dozen seconds to several weeks (of
simulated time). Application inter-arrival times are drawn from the empirical distributions of the
input traces, and exhibit a bi-modal distribution with fast-paced bursts, as well as longer intervals
between application submissions. In summary, our workload consists of 80,000 applications, with
80% batch and 20% interactive applications. Batch applications include 80% elastic and 20% rigid
variants.

We simulate a cluster consisting of 100 machines, each with 32 cores and 128GB of memory. All
results shown here include 10 simulation runs, for a total of roughly 3 months of simulation time for
each run.

Finally, the metrics we use to analyze the results include: application turnaround, which allow
to reason about the scheduling objective function, and queuing time, which is an important factor
contributing to the turnaround time. Additionally, we measure the queue sizes that hold pending
and running applications, and resource allocation, measured as the percentage of CPU and memory
the scheduler allocates to each application.

10.2 Comparison with the baseline

We now perform a comparative analysis between our flexible scheduler and the baseline, and start by
disabling preemption: we omit interactive applications from the workload. Figure 4 (left) illustrates
the most important percentiles (in a box-plot) of the distribution of turnaround times, where we com-
pare two policies (namely, FIFO and SJF) used by both the baseline and our scheduler. The benefits
of our approach are noticeable, irrespectively of the scheduling discipline: the median turnaround is

5We support size-based disciplines in the family of SMART policies [41]. Here we assume application size information
to be known a-priori.
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Figure 4: Comparison of turnaround and queue time distributions, and application slowdown dis-
tributions for FIFO and SJF policies. White boxes (right box of every pair) corresponds to our flexible
scheduler, gray boxes correspond to the baseline. B-E stands for batch elastic and B-R stands for
batch rigid applications.

halved when compared to the baseline, indicating superior system responsiveness. Additionally, we
observe the benefits of a size-based policy in further decreasing turnaround times. We note that our
approach is beneficial for both rigid and elastic batch applications: Figure 4 (center) shows a box-plot
of application queuing times, which contribute to their turnaround. With our approach, both kinds
of applications spend less time waiting in a queue to be served. By differentiating classes of compo-
nents, applications can execute as soon as enough resources to produce work are available. Finally,
Figure 4 (right) focuses on application runtime: we report the slowdown computed as the ratio be-
tween the nominal application runtime (i.e., the time required for an application to complete in an
empty system, with all application components allocated their requested resources) and the effective
application runtime obtained with the simulation. Values above one indicate that applications run
slower in a system absorbing a given workload when compared to applications running in an empty
system. Overall, these results show that our scheduling approach does not impose a high toll on

Page 19 of 56



H2020-644182 RIA

31-12-2015 IOStack
10% Pending Queue 180 Running Applications
g ﬁ %0160’ —— -
Q . o
= : g 140¢
T a3 : E .
2 : —_— ' | £ 120 : ;
— : : - ]
Tz W=
E10%| = | g 8 ki
= = e
< < 40 :
10! ‘ ‘ 20

Fifo SJF Fifo SJF

Figure 5: Comparison of queues size for FIFO and SJF between our flexible scheduler and the base-
line. The white boxes (right box of every group) correspond to our flexible algorithm, gray boxes to
the baseline.

Cluster CPU allocation Clustery Memory allocation
o 1.0
0.8 = == 08 ! - _!-_
> —_

206 T 000 == 0.6l g T =
Q = E - —
1 — re 0.4f

0.2 0.2

00 Fifo SIF 00 Fifo SIF

Figure 6: Comparison of resource allocation distributions for FIFO and SJF policies, between our
flexible scheduler and the baseline. White boxes (right box of every pair) correspond to our approach,
dashed boxes to the baseline.

application runtime, while globally contributing to improved turnaround times.

Next, we support the general results discussed above with additional details. Figure 5 shows
the box-plots of the distribution of queue sizes, for both the pending and the running queues. Our
approach induces a smaller number of applications waiting to be served, as well as a larger number
of applications running in the system, compared to the baseline and across different policies. Indeed,
our flexible scheduler achieves a better packing of applications, which means they can start sooner.
Additionally, the benefits of a size-based discipline are clear: the number of applications waiting is
almost one order of magnitude smaller compared to a FIFO policy, while the number of running
applications is similar.

Figure 6 shows metrics from the cluster perspective: our approach (for both disciplines) induces
a far better resource allocation compared to the baseline, achieving more than 20% gains in both CPU
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Name Definition

SJE-2D | runTime * #RequestedServices

SRPT-2D1 | remainingRunTime x #RequestedServices
SRPT-2D2 | remainingRunTime x #ServicesYetToBeScheduled
HRRN-2D | (1 -+ wuithimey , 4RequestedServices

SJF-3D runTime = Y ;27" CPU; * RAM;
SRPT-3D1 | remainingRunTime Y30 CPU; x RAM;
SRPT-3D2 | remainingRunTime x y 3rpicesToSchedule Cpry, « RAM;

HRRN-3D | (1 + waitTime) , yservices Cpif, « RAM;

runTime

Table 10.3a: Definition of size used in the evaluation

and RAM allocation.®

Finally, we are going to show more results, that compare a rigid, a malleable and our flexible
scheduler with different policies. It is worth mentioning that currently no solution support a mal-
leable scheduler as we presented it in Section 8.2.

In single-server systems, the policies that are optimal for minimizing the average turn around
time are called SMART [41]; they prioritize short application over longer one. Two example of
SMART policies are SFJ (Shorted-Job First) and SRPT (Shortest-Remaining-Processing-Time). How-
ever, even if SRPT is considered optimal, it is rarely used because it leads to starvation of long running
application. For this reason policies like HRRN (Higher-Response-Ration Next) can be used; they cal-
culate a virtual size that is updated the longer the application reside in queue. In this evaluation we
are going to use four different policies: FIFO, SFJ, SRPT and HRRN.

Figures 7 to 14 confirm that our solution performs far better than a rigid scheduler and slightly
better than a malleable regarding of the policy used to sort the queue.

In conclusion using our flexible scheduler can greatly reduce the turn around time while improving re-
sources allocation regardless of the policy that is used to sort the applications in the pending queue.

10.3 Comparison between different definitions of size

In this section we will focus on size-based policies and in particular on their definition of size; they
were meant to be used in a single-server system or an unidimensional world, where there is only one
type of resource. In a data center, however, there is a cluster of machines, and each one has at least
two type of resources: CPU and Memory. For this reason we compare different definitions of size
that will move from an unidimensional to a multidimensional world; similarly to [42], we want to
“improve” the definition of size for every single policies that we introduced in the previous section
by, progressively, adding more information to them. Table 10.3a shows the definition of size that we
use in this section of the evaluation.

SJF-2D | SRPT-2D1 | SRPT-2D2 | HRRN-2D || SJE-3D | SRPT-3D1 | SRPT-3D2 | HRRN-3D
38,340.68 | 38,767.29 | 39,425.82 | 89,596.90 || 33,451.60 | 33,418.51 | 33,413.45 | 229,691.64

Table 10.3b: Turn around time (in second) between different definitions of size in our flexible sched-
uler.

Table 10.3b shows the results obtained by running the previous workload with these definitions
of size. We see that there is an improvement when we add more information to the definition of

6 Allocation is different from utilization: the simulator does not account for real application execution, so we cannot
report utilization figures.
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Figure 17: Comparison using different definition of size for HRRN with a rigid scheduler. B-E stands

for batch elastic and B-R stands for batch rigid applications.
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Figure 27: Comparison using different definition of size for SRPT with our flexible scheduler. B-E
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Figure 29: Comparison using different definition of size for HRRN with our flexible scheduler. B-E
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size. The only policy that perform worst in all cases is HRRN; the results are expected since the
policy avoid starvation by increasing the priority of applications while they remain in the queue,
thus big and long running applications can start before short ones. Figures 15 to 29 show the differ-
ence between all the size definitions that we took in exam under a rigid, malleable and our flexible
scheduler.

These results are possible because, in a unidimensional world, a short-living application can block
the queue due to the high amount of resources requested. To avoid this situation we can add the in-
formation of the number of services required to actually allow small applications to be executed
before large ones; as we see in Figures 18 to 29, this information improves the turn around time in all
policies but HRRN. We would expect that adding more information to the size could further improve
the turn around time, instead we see that this is not true for rigid schedulers (Figs. 15 to 17); having
a three dimensional size definition may improve the turn around of some policies compared to a
unidimensional definition, but in all cases having a two dimensional definition is sufficient to obtain
good results. The resource allocation, however, decreases a bit in a rigid system as more informa-
tion is added; it will allows big-but-short (big resource requirement but short lived) applications to
block the queue thus, increase queue times and reduce resources utilization in the cluster. Since our
flexible scheduler allows only the indispensable (inelastic) services to be launched, it can overcome
the problems that a rigid has with a three dimensional definition and, as a result, we can see that it
performs better than a one or two dimensional definitions.

In conclusion, adding more information to the size does not always improve the turn around time in a rigid
scheduler because some big-but-short applications can block the queue. However, with a malleable and with
our flexible scheduler this can be avoided and we can have lower turn around time and higher cluster resources
utilization with a three dimensional definition of size. We would like to stress more the fact that the malleable
scheduler is something widely adopted in theory, but not in use real systems.

10.4 Impact of different workloads

In Sections 10.2 and 10.3 we show the benefits on turn around time of a flexible scheduler solutions
— that split the services of an application in core and elastic — compared with a rigid scheduler that
does not. It is intuitive to think that the results highly depend on the workload; on the one hand,
more percentage of elastic applications lead to higher benefit for our flexible scheduler; on the other
hand, more inelastic (composed by only core components) applications will move the results much
closed to the rigid. However, in the worst case our flexible scheduler will perform exactly the same
as the rigid; the flexible scheduler will have to allocate the requested resources at one, therefore its
behavior is the same as the rigid. Table 10.4a shows the results of a simulation with a completely
inelastic workload; the results show that the average turnaround is exactly the same.

In conclusion, our flexible scheduler does not introduce any overhead and, in the worst case, will not
perform worst than a rigid.

10.5 Preemption

We turn now our attention to the full workload we defined in Section 10.1, including interactive
applications. Preemption is used when a high-priority, interactive application requires resources:
this applies both to manually set priorities (e.g., in a FIFO policy) and to size-based priorities. In
particular, we report results for the preemptive version of the SRPT policy.

FIFO PSJF SRPT HRRN
Rigid || 1,317,315.92 | 135,964.50 | 135,964.50 | 407,952.05
Hybrid || 1,317,315.92 | 135,964.50 | 135,964.50 | 407,952.05

Table 10.4a: Turn around time (in second) between a rigid and our flexible scheduler with a workload
composed by only inelastic applications.
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Figure 30: On the left, comparison of queuing time distributions between scheduling with and with-
out preemption. White boxes (left box of every pair) correspond to a non-preemptive system, gray
boxes to our preemptive algorithm. On the right, turnaround ratio distributions between scheduling
with and without preemption. B-E stands for batch elastic applications, B-R stands for batch rigid
applications and Int is for interactive applications.

Figure 30 shows the most relevant percentiles of the distribution of application queuing times,
grouped by application type (both cases of batch and interactive applications), with and without
our preemption mechanism. Globally, preemption does not subvert the perceived system respon-
siveness. However, interactive applications under preemptive scheduling enjoy roughly two orders
of magnitude less queuing times. Users do not wait for few dozens minutes but only few seconds,
for their interactive application to start. As a consequence, elastic batch applications pay with more
variability (but stable for the median case) in queuing times.

Since our simulator does not account for real work done by applications, the preemption mecha-
nism does not have any effect on the work that has been done by preempted components. In practice,
our current preemption mechanism would instead suppress work done by elastic services, if pre-
empted. Studying new preemption primitives, e.g. by suspending Linux containers, is part of our
research agenda: this is the main reason why our current prototype implementation lacks support
for preemption.

Finally with Figs. 31 to 33 we show the results for all the policies with their different definition of
size that we identified in Section 10.3; globally, the considerations made before for the SRPT policy
can be applied for the other policies as well. However, we can see a drop in the resource utilization
and an increase in the size of the pending queue when using a preemptive system; this is because we
are no longer respecting the order imposed by the policy, but we are prioritizing interactive applica-
tions that have a much longer duration compared to the batch, thus a lot of shorter applications are
forced to wait.

11 Experiments with Zoe

Our goal now is to perform a comparative analysis of two generations of Zoe: the first, implementing
a rigid scheduler, as for the baseline, the second with the flexible scheduler we present here. In our
experiments, we replay the exact same workload trace for both generations. Each trace takes about
3 hours from the first submission to the last. During our experiments, no other user was allowed to
submit jobs to Zoe.

Workload. We use two representative batch application templates, including: 1) an elastic applica-
tion using the Spark framework; 2) a rigid application using the TensorFlow framework. Following
the statistical distribution of our historical traces, we set our workload to include 80% of elastic and
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rigid applications and Int is for interactive applications.
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Figure 34: Comparison of turnaround time distributions using the FIFO discipline. White boxes
(right box of every pair) correspond to the second generation of Zoe that implements our algorithm.
B-E stands for batch elastic and B-R stands for batch rigid applications.

20% of rigid applications, for a total of 100 applications. Application inter-arrival times follow a
Gaussian distribution with parameters ¢ = 60 sec, and ¢ = 40 sec, which is compatible with our
historical data. More specifically, using the elastic application templates, we run two use cases. First,
an application to induce a random-forest regression model to predict flight delays, using publicly
available data from the US DoT.” Second, a music recommender system based on alternating least
squares algorithm, using publicly available data from Last.fm®. Both applications have two different
requirements in term of memory for each elastic component. The random-forest regression model
has 3 core components and then 32 elastic components of 16GB or 8GB RAM each; every elastic
component uses 1 CPU. The music recommender system has 3 core components and then 24 elastic
components of 16GB RAM or 8GB each; every elastic component uses 6 CPU. Instead, using the rigid
application template, we train a deep Gaussian Process model [43], and use both a single-node and
a distributed TensorFlow program, requiring 1 and 10 workers (and 5 parameter servers) each with
16GB of RAM.
Experimental setup. We run our experiment on a platform with ten servers, each with two 16-
core Intel E5-2630 CPU running at 2.40GHz (total of 32 cores with hyper-threading enabled), 128GB
of memory, 1Gbps Ethernet network fabric and ten 1TB hard drives. No GPU-enabled machines
are available in our platform, at the moment. The servers use Ubuntu 14.04, Docker 1.11 and the
standalone Swarm manager. Docker images for the applications are preloaded on each machine to
prevent container startup delays and network congestion.
Summary of results. Using the FIFO scheduling policy, we compare the two generations of Zoe
according to the distributions of application turnaround times, as shown in Figure 34 (left). The
behavior of the two systems indicate a clear advantage for our approach: the median turnaround
times are 37% and 22% lower, for elastic and rigid applications respectively. Note also that the tails
of the distributions are in favor of our approach.

Overall, the new generation of Zoe that implements the flexible scheduler is more efficient, with
a 20% improvement, in allocating and packing applications, as illustrated in Figure 34 (right), where
we show the ratio of the distribution of allocated over available resources.

Finally, we present results concerning a low-level metric that measure the application ramp-up
time, i.e., the time it takes for applications scheduled for running, to receive their allocations and start
producing work. Zoe achieves a container startup time, including placement decisions, of 0.90 =

"http://stat-computing.org/dataexpo/2009/the-data.html
8http://www-etud.iro.umontreal. ca/~bergstrj/audioscrobbler_data.html
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0.25ms. Full-fledged applications, made by several containers, only take few seconds to start, which
is a compelling property, especially when compared to existing solutions such as Amazon EMR.

12 Related Work

While we cannot do justice to the richness of the scheduling literature, in this section we organize re-
lated work in three groups. The “competitors” are existing, mature systems that could be considered
sufficient to address our problem statement, at a first sight. The second group includes recent works
in the systems research literature, while the third covers works on scheduling at the task level.

Many “competitor” systems have been designed to cope with the problem of sharing cluster
resources across a heterogeneous set of applications, some of which can be tweaked to achieve the
goals we set in this work. For example, Yarn [31] and Mesos [18] have been among the first to
enable multiple frameworks to coexist in the same cluster: usage of these “two-level” schedulers
yield a big improvement as compared with monolithic approaches to resource scheduling. Originally
designed for analytic frameworks, such systems deal with the scheduling of low-level processing
tasks. Recently, more general approaches address the problem of cluster-wide resource management:
Omega [19], then Borg [20] (and Kubernetes [32]) reason at the “container” level, and are optimized to
achieve efficient placement and utilization of cluster resources, when absorbing a very heterogeneous
workload. This latter includes a majority of long-running services, which power Web-scale, latency-
sensitive applications. Additionally, container orchestration frameworks, such as Docker Swarm
[33], also provide efficient and scalable solutions to the problem of scheduling (that is, placing and
provisioning) containers in a cluster. Our work relies on many of the above systems, and can use
them as a back-end to support scheduling of high-level applications rather than provisioning low-
level containers. Existing auxiliary deployment tools such as Aurora [44] and Docker Compose [45],
do not address scheduling problems.

In the systems research literature, we find several inspiring system designs, with ideas that can
be “borrowed” to further extend our system prototype and research scope. For example, Koala-f
[24] tackles dynamic resource allocation problems, which manifest in our case with “idle” interactive
applications. Similarly to HCloud [23], we believe important to break the reservation paradigm, and
allow users to express performance requirements rather than machine-level resource counts. This can
be easily included in an application description, but requires developing additional components to
infer statistical models of application properties based on systems observations, as done for example
in Tarcil [29], Paragon [25] and Quasar [26]. Overall, by focusing on a higher-level of abstraction, the
focus of our work is to address a rather abstract scheduling problem: our implementation indicates
that our ideas work in practice and also bring tangible benefits.

Finally, many works address the problem of low-level task scheduling. Such schedulers are
designed to support a specific “data-flow” programming model, but many of their design choices
can also be used at a higher level. For example, Tyrex [30] and HFSP [46, 47] are a sample of size-
based schedulers, which is a family of policies known to drastically improve turnaround times, as
we also have verified with our experiments. Similarly, Quincy [27] and DRF [48] study max-min
fair, task-level resource allocation, specifically working on multi-dimensional resources. Although
our prototype currently consider a one-dimensional packing problem, due to the characteristics of
the back-end we use, which does not yet support CPU-level partitioning, ideas presented in [48]
can be extended to our work, considering alternative back-ends supporting multi-resource parti-
tioning. Recently, schedulers supporting complex directed acyclic graphs representing low-level,
parallel computations have also appeared: Graphene [49], for example, addresses the problem of
complex dependencies and heterogeneous demands among the various stages of the computational
graph. The work in [50] indicate substantial improvements in terms of resource utilization (and not
only allocation) thanks to worker queues, that independently schedule tasks. Bistro [21] employs a
novel hierarchical model of data and computational resources, which enable efficient scheduling of
data-parallel workloads. Firmament [51] is a centralized scheduler that has been shown to scale to
over ten thousand machines at sub-second task placement latency, using a min-cost max-flow op-
timization approach. Issues related to scheduling scalability, due to the sheer number of low-level
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tasks that are typically required by analytic jobs, have been addressed through a distributed design,
such as in Sparrow [28] and in Condor [22]. Although working at the application-level as we do in
our work imposes a low toll on the scheduler, distributed designs are interesting also from the failure
tolerance point of view, which is why they represent a valid option for our future work.

Page 52 of 56



H2020-644182 RIA
31-12-2015 IOStack

Part I11
Conclusions

13 Conclusions

Efficient resource management of computer clusters has been a long-lasting area of research, with
peaks of attention happening in conjunction to improvements in computing machinery, e.g. lately
with cloud computing and big data. A new breed of cluster management systems, aiming at becom-
ing “data-center operating systems”, are currently been confronted with problems of efficiency and
performance at scale.

Despite recent advances, there exists a gap between the goal of low-level resource management,
and that of manipulating high-level, heterogeneous, distributed (analytic) applications running in
such cluster environments. In this work we presented a first possible step to fill this gap, in the
form of a new application scheduler that interacts with a cluster management back-end, to schedule
and allocate resources to applications defined with a simple language and semantics. In addition
to careful engineering, required us to design and implement our system we call Zoe, our research
identified a more fundamental problem, that required to design a novel scheduling heuristic capable
of manipulating composite applications, while contributing to system responsiveness.

We validated our algorithm to address our scheduling problem along two lines. We used a nu-
merical approach to simulate large-scale deployments and workloads. We showed our scheduling
algorithm to be highly effective in reducing turnaround times, in particular by reducing applications
queuing times. Consequently, cluster resources were better allocated. In addition, we reported an
overview of the evaluation of Zoe, that indicates superior performance and efficiency related to our
flexible scheduling heuristic.

Our road-map includes the development of a method to redeem untapped resources from idle but
running applications, which calls for a substantial rethinking of the resource reservation paradigm;
the design and implementation of application fault tolerance mechanisms; and a long list of pending
“tickets” stemming from our open-source Zoe project.
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