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1 Executive summary
From the onset of the IOStack project, the WP4 team’s assessment was that the Apache Spark project
would soon become central in the big data space. This was soon confirmed in 2015, as Apache
Spark overcame the Apache Hadoop project, see for instance [1, 2]. A second assessment was that an
Apache SQL pushdown to Swift prototype would very well demonstrate data reduction techniques
which are a main goal of WP4. Discussions with the Gridpocket company strengthened our thinking
that such a technology could be an important enabler for Apache Spark adoption for big data analyt-
ics .

The following paragraph gives a more detailed rationale for this technology: extracting value
from data stored in object stores, such as OpenStack Swift, can be problematic in common scenarios
where analytics frameworks and object stores run in physically disaggregated clusters, as is mostly
common when Apache Spark is used. One of the main problems is that analytics frameworks must
ingest large amounts of data from the object store prior to the actual computation; and this incurs a
significant resources and performance overhead. To overcome this problem, we aimed at develop-
ing a technology which would enable analytics frameworks to tap unused computational resources
at object stores to both off load filter computation from Spark analytics jobs and also alleviate the
networking bottleneck that is too often observed during the data ingest phase. This goal would
be achieved by offloading ETL-type and SQL querying functions to the object store which would be
instrumented with the Storlet [3] technology acting as a rich and extensible active object storage layer.

The first year of the IOStack project, was devoted to lay the basis for reaching this goal: first by
stabilizing and open sourcing the Storlet technology, which would become instrumental for running
within Swift the pushed down SQL filter tasks; and secondly by outputting the initial version of the
Stocator connector which became in 2016 the first industry class connector of Apache Spark to Object
Stores.

During the second year, our efforts were devoted at consolidating the Stocator connector, and set-
ting up a prototype of the Spark SQL pushdown prototype. We then validated this prototype against
the Gridpocket use case and finally analyzed its performance and scale-up capabilities through ex-
tensive experiments conducted in a 63-machine production class cluster with generated IoT data and
SQL queries from GridPocket. These experiments shown that our technology exhibits query execu-
tion times up to 30x faster than the traditional “ingest-then-compute” approach.

The described WP4 achievements result from the cooperation between the following IOStack
consortium partners:

• IBM, which designed, implemented and tested both the Spark and Object Store parts of the
prototype.

• Arctur, which provided the IOStack testbed

• Eurecom, which provided the Zoe tool which permitted the installation of the various Spark
clusters that we used both in validation and performance testing phases

• Gridpocket, which provided the use case, including scenario, data, queries as well as the note-
book code which drove part of the experiments

• URV, which provided both the Crystal software (for easy installation and usage of Storlets) as
well as their expertise at interpreting and describing the experimental data that was collected
in the experimental phase

Page 1 of 25
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Figure 1: Impact of the “ingest-then-compute” problem on GridPocket analytics.

2 Introduction
These days, object stores, such as Amazon S3 [4], OpenStack Swift [5] or IBM Cleversafe [6], accumu-
late enormous amounts of non-structured or semi-structured data. A key reason for the popularity of
object storage is its scalability, availability and cost effectiveness properties. But perhaps more impor-
tantly, its simplicity of use via HTTP RESTful APIs brings unique opportunities to easily automate
the storage of data from any remote source.

A simple storage interface is preferable in numerous scenarios and use cases, from Internet-of-
Things (IoT) to server logs amounting to a few terabytes. Due to their volumes and velocity, servers
and sensors autonomously store data “as is” in object stores, without further processing and struc-
turing. This is the case for companies such as GridPocket1: a smart energy grid company which is
part of the IOStack consortium and which provided the real life use case that motivated this research.
In the company’s daily operation, hundreds of thousands of smart meters automatically collect and
store energy consumption measurements from users across several European cities. Thanks to the
scalability properties of object storage, an increasing number of GridPocket meters can continuously
store energy measurements, while the system can scale out to satisfy the storage demands of the
company.

However, simplicity and flexibility on the storage side come at a cost. This is particularly visible
when extracting value from data. While this is less of a concern for dedicated clusters that provide
both storage and computation, and frameworks such as Hadoop or Dryad that co-locate computa-
tion with data, it is an important issue for elastic clouds and analytics-as-a-service platforms such
as Amazon Elastic Map-Reduce2 (EMR). In these platforms, object stores are physically disaggregated
from the compute clusters running the analytics [7]. Although disaggregating storage from computa-
tion has advantages (e.g., administration, security), the unintended consequence of such separation
is that analytics frameworks must first ingest large amounts of data to perform the computation.

In practice, executing analytics in disaggregated compute and storage clusters presents some
problems: i) Inter-cluster network bandwidth may be saturated due to parallel data ingestions from
multiple analytics jobs; ii) The data ingestion phase consumes extra resources (e.g., CPU, RAM) from
a compute cluster shared across multiple tenants; and iii) Analytics jobs suffer from overhead related
to ETL (Extraction-Transformation-Loading) tasks used to prepare raw data objects. In the literature,
this phenomenon is known as the ingest-then-compute or store-first-query-later problem [8, 9].

Unfortunately, the ingest-then-compute problem is also present in the company’s daily operation.
GridPocket data scientists execute Spark SQL workloads with heavy data ingestion against energy
measurement data stored in an object store. As shown in Fig. 1, executing a given query on increas-
ingly larger datasets involves a linear growth in query completion times. Hence, while GridPocket
datasets are continuously growing, the capacity to execute analytics on such data is insufficient due
to the overhead of data ingestion. Furthermore, as analytics frameworks evolve towards better per-
formance (e.g., Spark SQL v2.0 is x2-x10 faster than v1.6), the inefficiencies derived from the ingest-
then-compute problem will become a dominant bottleneck for many companies.

1http://www.gridpocket.com
2https://aws.amazon.com/en/emr
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2.1 Scope and Challenges

To address the Big Data ingestion problem in object storage, an architecture that integrates ETL and
querying functions in the object store with Big Data analytics models is needed. Among other things,
such an architecture should overcome two main challenges:

Task offloading. To drive data ingestion with the object store, we need a communication channel
that enables the analytics framework to offload processing operations to the object store. Specifically,
upon job execution, the analytics framework should be able to define the task to be executed at the
object store close to the data, to improve the performance or efficiency of the job at hand.

Rich active storage layer. The smartness of the storage layer should not be single purpose. Con-
versely, the challenge is to enable an object store to execute general-purpose code close to the data.
Such code should be easily deployed to extend the functionality of the system for handling new of-
floaded tasks. We could imagine, for instance, enforcing some degree of data privacy by ensuring
that the data (e.g., IoT electrical readings) can only be retrieved with a minimal granularity (which
would be a function of the identity and purpose of the reader).

Rethinking the problem of GridPocket, solving these challenges would enable us to add SQL
functionalities into the object store so it can cooperate with the analytics framework by becoming a
queriable data source. For instance, we could extend the object store with the functionality necessary to
execute SQL projections and selections directly where data lives. This would reduce data ingestion
and the need for processing power at the compute cluster. As a result, GridPocket data analytics
would become more scalable and efficient.

2.2 Contributions

To overcome the ingest-then-compute problem in disaggregated Big Data clusters, we describe in
this document the pushdown technology that we developed and which exposes a parallel architecture
that enables analytics frameworks to leverage the computational resources of object stores to accel-
erate the execution of jobs and make them more efficient. The described technology achieves this by
offloading ETL-type and querying functions to the object store through a rich and extensible active
object storage layer. Contrary to prior works [7, 10], the ultimate goal of the IOStack technology is
to extend the object store “on-the-fly” with new types of general-purpose code executed close to the
data, thus meeting the requirements of new offloaded tasks.

As a proof-of-concept, we translated a concept akin to “predicate pushdown” in the traditional
database literature [11, 12] into a disaggregated analytics ecosystem. Our implementation enables
efficient execution of SQL queries on raw Comma-Separated Value (CSV) data stored in OpenStack
Swift, to accelerate GridPocket analytics. At the analytics side, we extended the CSV data source
in Apache Spark, which can now offload SQL projections and selections on parallel object requests
against Swift. At the object store, we contributed to the OpenStack Storlets: a framework to intercept
and execute sandboxed code on object requests in OpenStack Swift. Among other things, we ex-
tended Storlets with the capability of efficiently executing computations close to the data. Moreover,
we created a new Storlet code to perform the SQL projection and selection filtering on CSV objects.
The source code of the various components of the IOStack pushdown technology are publicly avail-
able (see Section 6).

To evaluate our system, we executed extensive experiments on a 63-machines cluster over real IoT
data from GridPocket energy meters. Our results show that our pushdown technology can accelerate
the end-to-end SQL processing time on the semi-structured data by up to 30 times depending on the
dataset size and amount of filtered data. Consequently, the IOStack developed technology enables
GridPocket to benefit from the advantages of object storage, while making their analytics workloads
much faster and more efficient.

In summary, as of end of 2016, the key contributions of the technologies developed in WP4 are:

• Design of a novel solution that exposes a parallel architecture to address the ingest-then-compute
problem for data stored in object storage;

Page 3 of 25
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• Implementation of the technology which allows Spark SQL to transparently offload the execu-
tion of selections and projections to OpenStack Swift, and hence, where the data lives;

• Validation of our system in a production cluster and generated data from GridPocket work-
loads;

• The release to open source of the various code components

• The public availability of the anonymized datasets

Roadmap: This document is organized as follows: in section 3 we discuss related work; section 4
provides technical background for the rest of this document; section 5 describes the design principles
of the IOStack pushdown technology; section 6 depicts our implementation to enable SQL predicate
execution at the object store and in Section 7, we present our validation framework and the results of
our experiments. We discuss our future work and conclude in sections 8 and 9, respectively.

Page 4 of 25
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3 Related Work
The ingest-then-compute data life-cycle imposed by infrastructure disaggregation is a performance
barrier for today’s data analytics frameworks [8]. This problem has attracted interest from the re-
search community in various ways. On the one hand, recent works have focused on interfacing
Hadoop with enterprise file systems to bridge the gap between legacy data stores and compute
clusters [13, 14, 15], or even replacing HDFS by optimized file systems to minimize the impact of
disaggregation [16, 8]. On the other hand, in-situ analytics aim at improving Big Data acquisition
(i.e., data collection, transmission, and pre-processing). Essentially, in-situ data processing benefits
from the compute capacity of data producers to execute computations and filters during data acquisi-
tion [17, 18, 19]. This approach reduces the amount of data that should be transferred and eventually
siloed, as well as the overhead of exporting raw data from the storage cluster to perform analytics.

Perhaps, the vein of research closest to this work refers to the application of active storage tech-
niques to mitigate the impact of compute/storage disaggregation. To wit, Huston et al. presented
Diamond [20], an active storage architecture that provides early discard of useless data in interactive
search. Conceptually, both Diamond and our system exploit the potential benefits of data filtering at
the data store via active storage techniques [21, 22]. However, Diamond has not been targeted and
applied on data analytics.

Regarding data analytics, Rhea [7] is a system for transparently filtering unstructured data in
MapReduce via SQL projections and selections. Rhea relies on a filter compilation engine to trans-
parently add SQL-like filters to MapReduce jobs which are executed on a filtering proxy at the storage
side. A similar effort called Minimal [23] focuses on automatically optimizing MapReduce programs
to reduce the data movements during the computation. More recently, Cybertron [10] combined data
filtering with novel coding techniques to reduce IO overheads of analytics jobs.

A key difference between our developed technology and these works lies in the storage layer.
First, some of these works do not support actual data locality at the storage cluster as done with
our technology; that is, Rhea [7] resorts to a proxy entity that executes data filtering, but all the data
should be read from the storage servers to the proxy. Second, these systems support only a limited
number of data filters, as they consider a particular use case (e.g., SQL predicate filtering). The
storage layer of our technology goes far beyond this goal. Our technology extends the object store
with a sandboxed platform that can execute custom pushdown filters on object requests exploiting
data locality. Analytics applications can communicate with the object store to dynamically execute
these filters (e.g., SQL filter, complex calculations, data compression), which are explicitly managed
via simple policies. This makes our technology a more general and flexible active storage system for
analytics than prior works.

4 Technical Background

4.1 Spark Ecosystem

Apache Spark3 is a general-purpose cluster computing framework that was developed at UC Berke-
ley. It was designed for iterative workloads and provides both APIs in Scala, Java, R and Python, and
libraries for stream and graph processing, machine learning and SQL.

Spark offers a simple programming API that lets programmers manipulate distributed collections
of Java or Python objects across a cluster through operations like map, filter, and reduce. Such col-
lections called Resilient Distributed Datasets (RDDs) [24] reside in memory to optimize computations
on large clusters. For instance, the Scala code below counts lines including the word “Spark” in a text
file:

t e x t F i l e = spark . t e x t F i l e ( " hdfs : / / . . . " )
l i n e s = t e x t F i l e . f i l t e r ( l i n e => l i n e . conta ins ( " Spark " ) )
p r i n t l n ( l i n e s . count ( ) )

This code creates an RDD of strings called textFile by reading an HDFS file, then applies filter
to obtain a derived RDD, lines. It then performs a count on this data. RDDs are immutable and

3Apache Spark Project http://spark.apache.org
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Figure 2: Components in a Spark deployment to execute SQL queries on semi-structured data stored
in an object store.

lazily evaluated. They are also resilient because they maintain lineage information for reconstruct-
ing lost partitions. The critical improvement of Spark as compared with Hadoop lays in its ability
to cache intermediate results in memory as RDDs. However, caching is mostly beneficial for itera-
tive algorithms (e.g., for machine learning). Ad-hoc querying and data exploration, instead, require
access to data that is harder to cache, because in such cases, data access patterns are less prone to
benefit from the limited amount of RAM available for caching. Hence, caching does not alleviate the
“ingest-then-compute” problem.

As visible in Fig. 2, there are libraries on top of the engine that facilitate different types of analytics
workloads. Our work focuses on Spark SQL: a library for structured data analysis. Spark SQL is
essentially a generic engine for distributed structured data manipulation. The operations on data are
done using SQL queries and a programmatic API (i.e., Data Frames API). Out-of-the-box Spark SQL
can read various data formats, such as data coming from Parquet, JSON and Hive tables.

For other data sources or formats, Spark SQL offers the “Data Sources API”. Implementing these
APIs enables us to import new formats into Spark SQL. In a nutshell, this API is used by Spark-SQL
to translate some foreign data format into a common representation of structured data that Spark SQL
knows how to work with. We focus on the Spark-CSV library which is an implementation of the Data
Sources API for importing CSV formatted data into Spark SQL.

Spark SQL uses a query optimizer called Catalyst [25], [26]. Given a SQL query, the optimizer
extracts the projection and selection filters implied by the query. These extracted filters are then
used by Spark SQL with the customized flavors of the data source API. As we describe later on, we
leverage Catalyst filter extraction together with the Data Sources APIs to offload the filtering work
from Spark to the object store.

At the lowest level, Fig. 2 shows that Spark interoperates with Hadoop, in that it can manage
data from any storage system supported by Hadoop, including HDFS or S3. For interoperation with
Swift, the connector supports Hadoop’s input/output APIs, although many of their operations are
not native to Swift, such as moving, copying or renaming directories.

4.2 OpenStack Swift

OpenStack Swift is a highly scalable object storage system that can store a large amount of data
through a RESTful HTTP API similar to that of Amazon S3. It provides a simple API to store (PUT),
retrieve (GET), and delete (DELETE) objects. The access path to an object consists of exactly three ele-
ments: /account/container/object. The object is the exact data input by the user, while accounts and
containers provide a way of grouping objects. Nesting of accounts and containers is not supported.

To achieve high scalability, Swift exploits the synergy between a flat object ID space and consistent
hashing via a hash-based data structure called ring. The ring guarantees access load balancing across
nodes within the cluster; this results in higher performance and storage capacity as more nodes
are added to the cluster. Moreover, Swift can be run on commodity servers, which facilitates the
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Figure 3: Swift Architecture

horizontal scaling of large deployments.
As shown in Fig. 3, internally, Swift exhibits a two-tier architecture that consists of proxy and ob-

ject servers. The former are in charge of authentication, authorization and access control enforcement
of storage requests. Upon reception of a valid request, a proxy server routes it to the corresponding
object servers for storage. Object servers are also responsible for handling the replication of objects
across available disks to reach the defined data availability threshold, and for managing objects.
Both proxies and storage nodes include a WSGI4 pipeline that enables developers to configure mid-
dlewares that intercept object requests with environment information.

5 Design
The main goal of developed technology is to enable analytics frameworks to benefit from the compu-
tational resources of an object store for optimizing job execution in disaggregated clusters. Indeed,
the cooperation between analytics frameworks and object stores can be exploited in many ways.
For instance, the object store may execute projections/selections defined in a SQL query to avoid
transferring unnecessary data to the compute cluster. Alternatively, it can perform aggregations on
individual object requests to facilitate the construction of graphs from a large dataset.

To solve this challenge, at the analytics framework, we provide existing analytics tasks with a
means of delegating or “pushing down” specific computations to the object store. The object store,
in turn, needs to have a rich and extensible compute layer that makes it capable of executing various
types of calculations and ETL tasks based on incoming requests. Our technology achieves that by
providing three abstractions: pushdown task, analytics delegator, and pushdown filter.

5.1 Concepts

Pushdown task: A pushdown task is the work being delegated to the object store. In practice, a push-
down task is represented as a piece of metadata attached to an object request. It embodies the trade-
off between the consumption of compute resources at the storage cluster and the acceleration of
analytics jobs. With our technology, a pushdown task is interpreted broadly; for instance, it may
consist of predicates to filter from an SQL query or a partial computation to be executed on object
request (e.g., aggregations, statistics). Naturally, both the analytics framework and the object store
require an end-to-end orchestration to cooperate on a given pushdown task.

Analytics delegator: The analytics delegator is integrated with the analytics engine and enables
our technology to push down tasks to the object store. The main purpose of the analytics delegator is
to appropriately tag parallel object requests with the correct metadata to execute pushdown compu-
tations at the object store. Thus, upon the submission of a job, the analytics delegator works within
the distributed task execution flow by attaching to each data partition the pushdown task that will
be executed at the object store.

Pushdown filter: A pushdown filter (not to be confused with a Pushdown task) is a piece of
programming logic that a system administrator can inject into the object store to perform custom
computations. In our system, the behavior of pushdown filters is defined by two main properties: i)
A pushdown filter is triggered upon an incoming object request with the appropriate metadata that pro-

4https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface
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Figure 4: Architecture of our pushdown technology deployed on top of OpenStack Swift.

vides instructions to do so; ii) The execution of a pushdown filter occurs within the context of a single
inbound/outbound data stream of an object request. This means pushdown filters are not designed to
communicate among them at runtime to perform distributed coordinated computations. Our push-
down technology offers a powerful compute layer general enough to run a variety of calculations on
object, from ETL and data discard tasks, to more complex numerical and statistical processes. A key
feature of pushdown filters is that the instrumented object store is oblivious to their execution, and
needs no modification to its implementation code to support them.

5.2 Architecture

Next, we present the design of our pushdown technology on top of OpenStack Swift to overcome the
ingest-then-compute problem in analytics platforms (see Fig. 4).

At the compute cluster, our pushdown technology is able to delegate computations to the object
store to accelerate submitted analytics jobs of different tenants via the delegator component. As shown
in Fig. 4, an analytics job is broken into tasks that are distributed among the cluster nodes. Thanks
to the delegator, analytics tasks that form the job can now add the appropriate pushdown task at each
object request generated. This is achieved by piggybacking specific metadata fields in the HTTP GET
request executed against the object store. Note that each tenant sharing the compute cluster may
be executing very disparate analytics jobs. Therefore, each interceptor should inject the appropriate
pushdown task to each job to trigger the correct computations in the object store.

At the storage cluster, we equip the object store with a general-purpose and powerful computa-
tion layer to execute the pushdown filters defined in the metadata of each object request. The execution
of pushdown filters is performed on a request’s data stream. This means multiple jobs can execute
parallel pushdown filters on GET requests of the same object; all of them will receive their “own fil-
tered version” of the object, whereas the stored object will remain unaltered. In particular, our push-
down technology is able to execute several pushdown filters on a single request (i.e., pipelining),
as well as to decide the execution stage of a pushdown filter (i.e., proxy/storage node). Moreover,
our pushdown technology can be extended “on-the-fly” with new pushdown filters. A third party
integrating a new pushdown filter only needs to contribute the logic; the deployment and execution
of the filter is managed by the system.
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6 Implementation: Spark SQL Pushdown
In this section, we illustrate the implementation of our pushdown technology and how we extended
it to leverage SQL pushdown for Apache Spark on top of OpenStack Swift. Our implementation
is targeted at enhancing the daily operation of GridPocket, an energy grid company that executes
heavy SQL workloads on object-based datasets generated by smart energy meters.

6.1 Architectural Components

Delegation of Spark SQL predicates: To delegate SQL queries we used the Spark Data Sources API.
Specifically, we modified the Spark-CSV library [27], which allows to import CSV data into Spark.

The technical background is that the Data Sources API has several flavors. The simplest flavor is
called Scan. Scan takes no parameters, and is expected to return all the originally “foreign formatted”
data in the common representation used by Spark SQL. A more complex flavor is the PrunedScan
API which takes a selection filter as a parameter, and returns the selected columns in the common
representation. The PrunedScan API can be seen as a generic Spark-SQL mechanism for enabling
the Data Source library not only parsing the formatted data, but also to filtering it. Further, the
PrunedFilteredScan API flavor takes both a projection and selection filters, thus enabling passing both
filter types to the Data Source library. In our implementation, we augmented the Spark CSV library
with the PrunedFilteredScan Data Source API. Concretely, most of our work focused on enabling
this library to push down projections/selections to OpenStack Swift, so data filtering is done at the
storage cluster instead of at the compute cluster5.

To read CSV data, we use Spark in cooperation with Hadoop, which is responsible for reading
the data from the physical storage while taking care of logical records that may be split between
partitions. To this end, Hadoop can work with a set of drivers that manage data from various sources.
In this work, we extended Stocator6, a high-speed connector to object stores. Stocator optimizes
many aspects of the data access to object stores, as compared with the standard Hadoop driver,
and optimizes the performance of managing large datasets in OpenStack Swift (e.g., metadata, file
renaming). This is demonstrated, for example, in experimental measurements reported in [28]. We
modified Stocator so that it could inject pushdown tasks in object requests issued to Swift; that is,
HTTP requests issued by Spark tasks to ingest data objects are tagged with the appropriate metadata
(e.g., projections/selections) to execute both projections and the selections at the object store. We also
extended the Hadoop RDD so that the projection and selection filters propagate through the RDD’s
partitions all the way down to Stocator.

In Section 8, we discuss how our work is evolving towards a framework which generalizes the
current SQL pushdown capabilities and bypasses the Hadoop layer.

Pushdown filter framework: Our technology offers simple means for deploying and enforcing
pushdown filters on a particular tenant or container via policies in OpenStack Swift [29]. It intercepts
storage requests and executes the pushdown filters specified on the request’s metadata at storage
nodes. To this end, we contributed to the OpenStack Storlets framework [3, 30], which allows running
computations, called storlets, in the object store. Storlets provides a powerful extension mechanism
to OpenStack Swift —without changing its code— to run computations close to the data in a secure
and isolated manner making use of Docker [31]. With Storlets a developer can write code, package
and deploy it as a regular object, and then explicitly invoke it on data objects as if the code was part
of the Swift’s WSGI pipeline. Request interception can occur not only at the proxy but also at the
object servers thanks to the Storlet’s WSGI middleware integrated in Swift, which “wraps” storage
requests and responses.

In this work, we extended the Storlets framework with two important capabilities: Pipelining
and staging execution control (i.e., proxy/storage node) of pushdown filters. In addition, the Stor-
let WSGI middleware in Swift was extended to support running Storlets at storage nodes for byte
ranges; this was fundamental to match the natural operation of Spark tasks, which work on specific
byte ranges of objects. This for two reasons: first, to avoid transferring the full object from the ob-

5Available at: https://github.com/iostackproject/Scoop-csv-sql-pushdown
6Available at: https://github.com/SparkTC/stocator
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ject node to one of the proxies instead of processing on the targeted byte range directly at the object
node, and second, to benefit from the higher concurrency provided by the Swift object nodes pool as
compared with Swift proxy nodes pool.

CSVStorlet: Writing pushdown filters to accelerate analytics jobs is developer-friendly. In the
code snippet below, we observe that a system developer only needs to create a class that implements
an interface (IStorlet), providing the actual data transformations on the object request streams
(iStream, oStream) inside the invoke method. This model makes it possible to implement a wide
variety of storage-side calculations to reduce inter-cluster data movement and improve performance
of analytics frameworks.

public c l a s s StorletName implements I S t o r l e t {

@Override
public void invoke (

ArrayList <Stor le t InputStream > iStream ,
ArrayList <StorletOutputStream > oStream ,
Map<Str ing , Str ing > parameters , S t o r l e t L o g g e r l o g g e r )

throws S t o r l e t E x c e p t i o n {
/ / Deve lop pushdown f i l t e r l o g i c h e r e

}
}

As a proof-of-concept, we contribute a storlet that can perform projection and selection filters over
CSV data7. The CSVStorlet is a Java code that adheres to the Storlets API; it gets as input a stream of
the locally stored CSV formatted data along with the projection and selection filters as extracted by
Catalyst, and outputs the filtered data.

6.2 The Pushdown Process Flow

Next, we depict the workflow involved for pushing down SQL predicates from Spark to OpenStack
Swift. To this end, we follow a simple example where the user interacts with Spark using the Spark-
Shell interpreter (Fig. 5). The commands entered are initially processed by the Spark client that gen-
erates a staged execution plan where each stage consists of multiple tasks to be executed in parallel
on Spark worker nodes.

The flow begins with the user specifying i) a data source class implementation that matches the
data format, as well as the ii) dataset location (step 1 in Fig. 5). Part of the data location is the name of
the storage driver to be used to read the data. In our example, the driver is Stocator and the location
is a path in Openstack Swift, which may represent a container with multiple data objects. The class
is the Spark-CSV class [27], as we are executing Spark SQL queries on CSV data. At this point, Spark
initiates the CSV class that in turn creates a Hadoop RDD, which essentially represents data that
resides in a data store in its original format and that can be accessed with the HDFS API.

Following the Hadoop RDD creation, a process called partition discovery takes place. This pro-
cess involves partitioning the data set and associating each partition with a task. Each of these tasks,
when scheduled for execution will be dynamically associated to one of the Spark worker nodes. For
Hadoop RDDs, the underlying storage driver checks the total size of the data specified by the user
and divides the total size by the HDFS chunk size. In traditional HDFS implementations, the chunk
size is the size of the atomic placement unit in the file system. That is, each file is made of chunks that
are spread over the HDFS cluster. As such, this number has system-wide implications. However, this
is not the case for object stores. We elaborate more on that in Section 8. We also note that the partition
discovery process takes place before a query has been specified.

The user defines a SQL query over the data, and collects the results as a list (steps 2,3 in Fig. 5).
At this point, Catalyst calculates the implied projection and selection filters and calls the appropriate

7Available at: https://github.com/openstack/storlets/tree/master/StorletSamples/java/CsvStorlet/src/
org/openstack/storlet/csv
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Figure 5: Overview of our implementation to leverage Spark SQL pushdown for OpenStack Swift.

data source API of the CSV class. The original Spark CSV class only supported projection/selection
filtering execution within the compute cluster after ingesting the entire dataset. In Fig. 5, our CSV
component extends the former CSV class to push down both SQL projection and selection from user
queries to Swift.

Within the data source API that is called, each partition of the Hadoop RDD invokes Stocator to
send a GET request to Swift to retrieve the chunk of the data for which it is responsible. To allow
pushdown this GET request was changed to invoke the CSVStorlet so as to get back the filtered data.
Therefore, for each partition Stocator sends a GET request with the CSVstorlet invocation. The storlet
reads the data directly from disk, applies the appropriate pushdown filters defined for that tenant
and sends back the filtered data. The resulting filtered data gets back to the worker node from which
the request originated. The filtered data from all partitions are then further processed in each worker
which run the part of the SQL query that was not pushed down. The local worker output is then
aggregated back within the Spark client which completes the query processing.

Next, we show how this workflow greatly accelerates Spark SQL queries and mitigates the ingest-
then-compute problem in disaggregated analytics clusters.

7 Experimental Evaluation
We evaluated a prototype of our technology for Spark and OpenStack Swift in terms of performance
and overhead.

Objectives: Our evaluation demonstrates the contributions of this work by showing that it : i)
provides an important acceleration of Spark SQL queries; ii) enables a real use-case to speed up its
analytics workloads; iii) has an attractive resource consumption trade-off.

Metrics: In our experiments, we resort to two main metrics:
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Query name Query description SQL query syntax Column
selec.

Row
selec.

Data
selec.

ShowMapCons Compute the per meter aggregated con-
sumption, allowing to display results ei-
ther in a heatmap or a per state aggre-
gated consumption.

SELECT vid, sum(index) as max, first_value(lat) as lat,
first_value(long) as long, first_value(state) as state FROM
largeMeter WHERE date LIKE ’2015-01%’ GROUP BY SUBSTRING(date,
0, 7), vid ORDER BY SUBSTRING(date, 0, 7), vid

92.00% 99.62% 99.97%

ShowMapMeter In order to display a cluster map, obtain
each meter with its info (city, Id,...)

SELECT vid, sum(index) as max, first_value(city) as city,
first_value(lat) as lat, first_value(long) as long,
first_value(state) as state FROM largeMeter WHERE date LIKE
’2015-01%’ GROUP BY SUBSTRING(date, 0, 7), vid ORDER BY
SUBSTRING(date, 0, 7), vid

92.00% 99.54% 99.97%

ShowMapHeatmonth Get daily data for a given month for a
(slider) parametric per day display.

SELECT SUBSTRING(date, 0, 10) as sDate, sum(index) as max,
first_value(lat) as lat, first_value(long) as long FROM largeMeter
WHERE date LIKE ’2015-01%’ GROUP BY SUBSTRING(date, 0, 10), vid
ORDER BY SUBSTRING(date, 0, 10), vid

92.00% 99.54% 99.96%

Showgraphcons Obtain the consumption of meters in Rot-
terdam for the Jan. 2015.

SELECT SUBSTRING(date, 0, 10) as sDate, sum(index) as max,
vid FROM largeMeter WHERE city LIKE ’Rotterdam’ AND date LIKE
’2015-01-%’ GROUP BY SUBSTRING(date, 0, 10), vid ORDER BY
SUBSTRING(date, 0, 10), vid

99.99% 99.55% 99.99%

ShowPiemonth Obtain consumption for a specific subset
of state consumption.

SELECT SUBSTRING(date, 0, 10) as sDate, state as vid, sum(index)
as max FROM largeMeter WHERE state LIKE ’U%’ AND date LIKE
’2015-01-%’ GROUP BY SUBSTRING(date, 0, 10), state ORDER BY
SUBSTRING(date, 0, 10), state

99.99% 99.99% 99.99%

ShowGraphHCHP Obtain data for drawing peak versus
shallow hour consumption.

SELECT SUBSTRING(date, 0, 10) as sDate, vid, min(sumHC) as minHC,
max(sumHC) as maxHC, min(sumHP) as minHP, max(sumHP) as maxHP FROM
largeMeter WHERE state LIKE ’FRA’ AND date LIKE ’2015-01-%’ GROUP
BY SUBSTRING(date, 0, 10), vid ORDER BY SUBSTRING(date, 0, 10),
vid

99.99% 99.94% 99.99%

Showday Get the data for displaying the consump-
tion of any specified hour of a given
month.

SELECT SUBSTRING(date, 0, 13) as sDate, sum(index) as max,
vid FROM largeMeter WHERE city LIKE ’Rotterdam’ AND date LIKE
’2015-01-%’ GROUP BY SUBSTRING(date, 0, 13), vid ORDER BY
SUBSTRING(date, 0, 13), vid

99.99% 99.99% 99.99%

Table 6.2a: Set of data intensive queries typically executed by GridPocket data analysts.
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(a) Small dataset (50GB).
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(b) Medium dataset (500GB).
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(c) Large dataset (3TB).

Figure 6: Analysis of query speedup (SQ) for different types of query data selectivity and dataset
sizes.

• Query data selectivity: This metric describes the percentage of data that would not be necessary
for executing a given query and can be discarded. Normally, this metric refers to the data
discard of the entire dataset (i.e., the number of bytes discarded). However, in some points
of the evaluation, we also use the term selectivity to refer to the percentage of discarded data
corresponding to filtered columns or rows by a query (column/row selectivity).

• Query speedup (SQ): This metric describes the relation between the execution time of a query
with and without our pushdown technology as SQ =

Tno_pushdown
Tpushdown

. We measure execution times
from a client perspective; it includes the time of ingesting data from Swift and the Spark SQL
processing time. A value SQ > 1 reflects a gain in performance by our pushdown technology,
whereas a value SQ < 1 means the opposite.

The relationship between these two metrics will let us understand the performance/cost trade-off
of our pushdown technology as well as the situations in which it outperforms other technologies.

Datasets: The datasets used in this evaluation are anonymized versions of CSV files containing
energy consumption values captured by 10K GridPocket smart energy meters. Anonymized datasets
have exactly the same structural characteristics as the original ones, which means that from the view-
point of our performance measurements, anonymization has no effect. In our experiments we make
use of three dataset sizes: Small: 438 million rows (50GB); Medium: 3, 900 million rows (500GB);
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Large: 21, 099 million rows (3TB). All these datasets have identical structure, with 10 columns, and
every row represents a reading taken every 10 minutes. We also created a tool to generate synthetic
data that mimics the structural properties of GridPocket’s datasets8.

Queries: First, we employ a set of real life SQL queries typically used by data scientists in the
GridPocket platform to analyze the feasibility of our pushdown implementation. The queries that
have been selected are data intensive and their data selectivity percentages are shown in Table 6.2a.

Apart from real SQL queries, we performed additional experiments to understand the behavior
of our pushdown system. To this end, we executed synthetic queries on GridPocket datasets with
controlled fractions of data selectivity. In particular, we executed specific experiments to analyze the
impact of row, column and mixed data selectivity.

Moreover, for the sake of statistical significance, the results shown for each query are based on at
least 15 executions.

Platform: We executed our experiments in the OpenStack Innovation Center (OSIC) testbed [32].
The platform consists of 63 servers (HP DL380 Gen9) equipped with 2X 12-core Intel E5-2680 v3
@2.50GHz, 256GB RAM, 12X 600GB 15K SAS - RAID10 and Intel X710 Dual Port 10 GbE NICs. The
organization of the servers is as follows: i) An identity manager machine running Keystyone (Mitaka
version); ii) 1 HA-Proxy load balancers backed up with VRRP; iii) 6 Swift proxy/metadata servers
(Mitaka version); iv) 29 object servers (Mitaka version); v) 25 Spark v1.6 workers, a Spark (stan-
dalone) master node, and a Spark client driving the experiments. To facilitate large deployments, the
software of Spark workers was running in Docker containers managed via Zoe9. All the nodes in the
cluster run collectd10 v5.4 in background to get resource usage metrics (CPU, memory, network).

The 3-replica object-ring was defined over 10 disks in each of the 29 nodes (290 disks altogether).
The container and account rings were defined over 10 disks in each of the 6 proxies (60 disks alto-
gether). All nodes were configured with a master-master bond over 2X10Gbps ports. The bonds
were used to setup a data network to serve all replication as well as workload traffic.

7.1 Performance Analysis

Next, we show a performance analysis of synthetic SQL queries of controlled data selectivity exe-
cuted with/without pushdown. Concretely, we focus on: i) the impact of the query data selectivity on
performance, ii) the role of selectivity type (row/column/mixed) and, iii) the dataset size.

First, Fig. 6 shows that pushdown exhibits higher speedup values as the query data selectivity
increases; more interestingly, such increase in performance is superlinear with data selectivity. To illus-
trate this, in Fig. 6(b) we clearly see that a query data selectivity of 80% provides a SQ ≈ 5, whereas
discarding 90% of the dataset pushdown achieves SQ > 10. In this sense, Fig. 7 shows in more detail
query speedup results for very high data selectivity. Clearly, this scenario is favorable to
pushdown queries with high percentages of data selectivity may benefit from execution times up to
31 times shorter than the traditional “ingest-then-compute” approach. The reason for this behavior
lies deeply on the type of bottleneck at hand: For low data selectivity, the network load balancer is
the bottleneck, so an increment of data selectivity provides a near-linear performance improvement.
However, we found that from ≈ 60% of data selectivity onwards, the bottleneck progressively shifts
from the network to the computational power of storage nodes. That is, for high data selectivity,
the amount of data transferred to the compute cluster does not saturate the network, but utilizes
significant compute resources from Swift storage nodes.

Overall, we observed that real life queries executed by GridPocket data scientists (Table 6.2a) ex-
hibit query data selectivity values > 90% from the total dataset. This indicates that our pushdown
technology can translate into a practical system to mitigate the ingest-then-compute problem in in-
dustrial environments.

Moreover, our pushdown technology archives significant query speedup even for moderate per-
centages of data selectivity. To wit, considering a mixed query data selectivity of 60%, we see that for

8https://github.com/gridpocket/project-iostack
9http://zoe-analytics.eu

10https://collectd.org/
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Figure 7: Query speedup results (SQ) for high data selectivity.

the 50GB dataset pushdown exhibits a SQ = 2.25, whereas for the 3TB dataset its performance is
SQ = 2.35. In other words, in this setting queries experienced an absolute improvement in execution
time of 40.92 and 2631.56 seconds for the 50GB and 3TB datasets, respectively.

We are also interested in observing the behavior of our pushdown technology for low data se-
lectivity. Appreciably, Fig. 6 depicts that our pushdown technology presents performance values
SQ ≈ 1 for data selectivity values close to 0. That is, for no data selectivity —i.e., ingest the entire
dataset— we registered a worst-case mean speedup penalty of 3.4% compared to plain Spark/Swift.
In terms of performance, this suggests that our pushdown technology can efficiently handle work-
loads formed by queries of high and low data selectivity.

We verified that pushdown does not exhibit higher performance variability than vanilla Spark/Swift.
For instance, the standard deviation values of query execution times for the 50GB (mixed selectivity)
dataset range between 0.43− 2.04 and 0.05− 1.33 for plain Spark/Swift and when pushdown is used,
respectively. We noticed a similar behavior for other types of selectivity and dataset sizes. This means
that our approach for discarding data at the object store does not introduce additional performance
variability.

Interestingly, for high data selectivity percentages, pushdown behaves differently depending on
the dominant type of selectivity. Fig. 6 shows that, in general, row selectivity exhibits higher perfor-
mance compared to column/mixed selectivity. A reason for this behavior may reside on our CSV
Storlet implementation; discarding an entire row by evaluating a condition may be more efficient
than selecting and concatenating multiple columns in the output stream.

Finally, in Fig. 6 we analyze the impact of the dataset size. In our experiments, pushdown exhibits
higher query speedup values for larger datasets. For instance, for 90% column selectivity, SQ = 6.72
and SQ = 12.51 for the 50GB and 3TB datasets, respectively. Fig. 7 illustrates this phenomenon more
clearly, for high data selectivity rates. The reason is related to the testbed infrastructure at hand;
queries executed against the 50GB dataset did not fully utilize the network and storage resources,
unlike the case of larger datasets. This is supported by the fact that the performance increase between
500GB (SQ = 10.23) and 3TB datasets is smaller.

7.2 Real use-case: GridPocket SQL queries

In a battery of experiments (Fig. 8), we demonstrate the performance benefits of our pushdown
technology for typical data intensive SQL queries executed by GridPocket data scientists (see Table
6.2a).

Fig. 8 shows the speedup of GridPocket queries for various datasets. Appreciably, for a small
dataset, our pushdown technology achieves query speedups ranging from SQ = 4.1 to SQ = 18.7.
Such differences in speedup for a given query are due to its percentage of data selectivity. That is, in
Fig. 8(a) the fastest query (ShowDay) exhibits a data selectivity of 99.99%, whereas for the slowest ones
the data selectivity is 92.05%. Further, in line with our previous observations, Fig. 8(a) demonstrates
that for a larger dataset pushdown achieves faster query execution times. Moreover, the speedup
differences among queries are less important.
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Figure 8: Analysis of query speedup (SQ) for real GridPocket queries over various dataset sizes.
Horizontal bars have an x / y annotation where x represents the mean query execution times when
using the traditional “ingest-then-compute” approach and y the mean query execution times when
using the “pushdown” approach.

As one can infer, for a company like GridPocket these improvements are significant. That is,
in the case that each query requires to import a different 500GB dataset to the compute cluster, the
total execution time of the set of queries in Fig. 8 is 4, 814.7 seconds. With developed pushdown
technology data scientists in GridPocket could execute the same set of queries only in 155.48 seconds.
This results represents a key step towards efficient analytics in a commercial setting.

7.3 Pushdown vs Parquet

Next, we compare our pushdown technology with other technologies that also mitigate the ingest-
then-compute problem. Concretely, we perform a comparison with Apache Parquet [33]. Parquet is
a format to store large datasets that provides two main benefits: i) It stores the data in a column-wise
manner, so that it is possible to efficiently discard entire dataset columns; ii) Parquet stores highly
optimized compressed data, which reduces the volume of network transfers. Note that Spark is in
charge of carrying out the tasks of (de)compressing data and discarding columns in Parquet format.

Fig. 9 shows query speedup values for both pushdown and Parquet. Compared with ingesting
data from plain Swift, Parquet offers significant speedups for very low query data selectivity. The
explanation is simple: Importing compressed data from Swift makes the ingestion phase shorter,
which is the dominant cost in the queries executed. Besides, for data selectivity of 0, Spark does not
need to execute computations to discard columns in Parquet format, which may also represent an
additional cost. Observably, the computation costs associated with Parquet seems to offer a better
trade-off either when data compression is more beneficial (no data selectivity) or when the fraction
of data selectivity is high.

Fig. 9 shows that pushdown query speedups exhibit a different behavior than with Parquet. For
no data selectivity, our pushdown technology provides no performance benefit to the system, as no
data can be discarded. Nevertheless, as we observed before, this experiment confirms that for higher
fractions of data selectivity the pushdown technology achieves superlinear SQ values.

Our experiments show that pushdown exhibits higher performance than Parquet for data se-
lectivity ≥ 60% using the 50GB datasets. For instance, for 90% data selectivity queries run with
pushdown are 2.16x faster than queries executed with Parquet. Note that the pushdown technology
achieves even better performance for mixed or row data selectivity, which cannot be shown as they
are not supported by Parquet. Our experiments also indicate that the data selectivity threshold in
which the pushdown technology outperforms Parquet is smaller for larger datasets.

We conclude that for SQL queries with high data selectivity —as the ones executed in GridPocket
use cases— the pushdown technology provides higher query acceleration than Parquet. Moreover,
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Figure 9: Performance comparison of Pushdown and Parquet for column selectivity.
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Figure 10: Resource usage of Spark nodes in the compute cluster and the inter-cluster network with
and without pushdown .

as our compute layer in Swift can accommodate general-purpose computations, we will explore
intelligent combinations of data filtering and compression for low data selectivity queries.

7.4 Resource Usage

In what follows, we analyze how the pushdown technology trades-off spare compute power at the
object store to minimize resource usage in a shared compute cluster and an over-subscribed inter-
cluster network. In particular, Fig. 10 compares the resources consumed —from the compute cluster
viewpoint— executing a GridPocket query (ShowGraphHCHP, 99% data selectivity) on the 3TB dataset
with and without pushdown.

Fig. 10(a) shows that pushdown achieves CPU savings at the compute cluster; first, the average
CPU consumption of Spark nodes to execute the given query is less than half when pushdown is
used (≈ 1.2%) compared to plain Spark/Swift (≈ 3.1%). Second, and perhaps more importantly, if
we consider the experiment execution time, the pushdown technology reduces the number of CPU
cycles for 97.8% to compute that query. These benefits are directly related to the fact of filtering data
at the storage side, which shortens the experiment and avoids Spark to execute data filtering prior to
the actual computations.

Fig. 10(b) illustrates the memory consumption at the compute cluster, which is a valuable re-
source shared across many jobs. As with CPU, the pushdown technology also provides significant
memory savings to Spark. At the peak, the average memory usage of Spark nodes is around 13.2%
lower for the pushdown technology than using vanilla Swift. The main reason for which memory
savings are not higher is because Spark discards useless data prior to the computation of the SQL
query. In addition, Fig. 10(b) shows that such amount of memory is kept in use for a period of
time 12-15x longer than when using pushdown, which may prevent the concurrent allocation of new
incoming jobs.

Interestingly, Fig. 10(c) points out that the network was the bottleneck for the ingestion of data.
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Figure 11: CPU utilization of Swift storage nodes with and without pushdown .

To inform this argument, the machine acting as load balancer was using a 10Gbps link to transfer
data between storage and compute clusters. Observably, for plain Spark/Swift the 10Gbps link of
the load balancer machine was close to saturation during the data ingestion phase of the query; to
wit, Fig. 10(c) shows that the transmitted bandwidth to the compute cluster was close to 10Gbps. It is
also visible that Swift proxy nodes were responsible for saturating the load balancer serving parallel
requests of Spark tasks.

In contrast, Fig. 10(c) reveals that the pushdown technology heavily offloads the inter-cluster
network. Both the load balancer and the Swift proxies only serve a small fraction of the total data
and for a much shorter period of time. That is, Fig. 10(c) shows that the load balancer exhibited an
average transmission bandwidth of 189MBps to the compute cluster, and only during ≈ 120 seconds.
Therefore, when using the pushdown technology both the datacenter network and Swift proxies have
more resources to serve other jobs or services running in the system.

Naturally, all these benefits at the compute and network level come at the cost of using compute
power at the object store. In terms of CPU, Fig. 11 shows that the pushdown technology consumes on
average a 23.5% of storage nodes CPU to execute projections/selections on the 3TB dataset, whereas
this resource is almost totally idle in plain Swift (average CPU usage of 1.25% in storage nodes).
Regarding memory, analyzing the execution of multiple SQL queries with pushdown we observed
that Swift storage nodes exhibited a near constant memory usage between 4% − 6%. Both CPU and
memory overheads are related to the Docker container used to run Storlets plus the code execution.

We conclude that our pushdown technology exhibits an attractive resource usage trade-off; it
incurs affordable CPU/memory overhead on Swift storage nodes in exchange of high query per-
formance acceleration and significant reduction of resource usage at the compute cluster and the
inter-cluster network.

8 Discussion and future steps
By implementing the Spark SQL pushdown use-case, we demonstrated that the concepts behind our
pushdown technology are powerful enough to accelerate and make more efficient analytics queries
in disaggregated clusters. Our present and future research will follow at least one of the following
directions:

• Generalize cooperation between analytics frameworks and object stores

• Towards adaptive pushdown execution

• Implement a complementary technology of data reduction

as detailed in the following.
Generalize cooperation between analytics frameworks and object stores. Boosting ingestion

with SQL pushdown techology leverages Spark-SQL data sources API to delegate projection and
selection filtering tasks to the object store. SQL projections and selections, are very important since
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direct SQL queries are not only by themselves, a very important use case, but also, higher level li-
braries such the mllib Spark library implicitly issue SQL queries. However, SQL queries are only a
particular case of the computations that our pushdown technology can carry out in the object store.
And since at the storage side, our pushdown technology provides a rich substrate to execute parallel
streamline computations on data objects, it is natural to work at generalizing the pushdown concept
to other big data use cases.

From the analytics viewpoint, any computation which follows the map-reduce like pattern:

• In a first phase (map), a set of sub-tasks can be run independently, each on its specific subset of
input dataset (these tasks are the push-down candidates)

• In a second phase (reduce), all the output of the first phase are merged in some way

could be pushed down in a way similar to that of the SQL pushdown.

The capabilities of our pushdown technology at the object store inspired us to generalize the dele-
gation of computations described in this document to solve many other problems beyond SQL push-
down. In fact, we already extended the Spark RDD [34] to allow the developer writing Spark tasks
that explicitly invoke computations at the object store via simple primitives. Thus, our new RDD:
i) Provides programmatic means to explicitly execute Storlets in OpenStack Swift from the code of
a Spark task; ii) holds the Storlet invocations output as its distributed dataset; and iii) embeds the
knowledge of partitioning the input dataset to parallel tasks. Our current work is to research how
this general form of task offloading may optimize other Spark analytics jobs.

Another way to generalize our present pushdown prototype is to handle data kept in non textual
formats: Unlike other stores connected to Spark, that usually hold specific or limited data formats
(e.g. [35], [36], [37]), object stores are not limited in the types and data formats they can store. Hence,
one can imagine different types of Spark jobs ingesting information from non-textual data thanks
to developed pushdown filters; examples include bringing EXIF metadata from JPEGs or text from
PDF documents. Besides, to delegate tasks to the object store on textual data, in this work we have
modified Spark’s Hadoop RDD. However, in addition to the complexity of Hadoop APIs, this ap-
proach partitions the dataset according to the underlying HDFS chunk size. While natural for HDFS,
the chunk size is not adapted to object stores. In object stores it seems more adequate to partition
according to, for instance, the number of replicas and the compute parallelism available in the nodes.

Our current work addresses these drawbacks [34]; we provide a Spark-CSV alternative that
makes use of a new RDD implementation, which is well aware of the CSVStorlet output. More
generally, the idea behind [34] is to pair a Storlet that does a certain function, e.g. extract textual
metadata from a binary object, to an appropriate RDD that is Storlet-aware. This approach makes
it possible to extend the pushdown concept to additional non-textual data formats, broadening the
scope of the applications of our pushdown technology With [34], the whole Hadoop layer can be
bypassed by calling from the Spark-CSV layer directly.

Towards adaptive pushdown execution. With our technology, an administrator can deploy push-
down filters on the object store and enforce them on a particular tenant’s requests. However, this
decision is static, meaning that the fact of enforcing a pushdown filter is done without taking into
account the workload conditions. It is not hard to imagine that, under peak workloads and CPU/-
parallelism constraints at the object store, an administrator may decide that only “gold” tenants enjoy
the pushdown service, whereas “bronze” tenants will ingest data in the traditional way. We can also
imagine that the effectiveness of the filter could be modeled —e.g., in the SQL pushdown filter by
approximating the data selectivity— and contribute to the decision of whether the pushdown fil-
ter should be applied or not. Clearly, the system should dynamically take these decisions based on
real-time monitoring information and transparently to the administrator.
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This goal can be reached thanks to the IOStack developed Crystal software11, which implements a
control architecture that can dynamically orchestrate the execution of Storlets in OpenStack Swift [29].
Similarly to [38], our future work encompasses the design of execution cost models for pushdown
filters into control processes. Such control processes will take as input workload or resource metrics
from the storage cluster to decide on runtime whether to execute a pushdown filter or not for a spe-
cific tenant.

Implement a complementary technology of data reduction for Spark SQL. The SQL pushdown
data reduction technology permits to reduce data from a set of objects by applying the SQL filter
at the data source against each of the objects, thus potentially reducing data for each of the objects
pertaining to the data set. Another very different and complementary way to pursue data reduction
for SQL is to detect objects as non-relevant and filter them out (not even reading them). The Hive
partitioning technology[39] goes along this philosophy, however it has its own limitations both in
terms of flexibility (e,g,. data has to be partitioned ahead of time in a manner that will fit the implicit
partitioning of future request, also this method does not fit for columns containing data pertaining to
a non discrete value set) and effectiveness (e.g., objects may still have be read although not relevant).
The basic idea is to improve this technology by enriching the meta-data of each object with lightweight
statistics which describe its various columns. This meta-data will permit to filter out the object (with-
out having to access it altogether) in many cases where it will not be relevant to a future request. As
for the SQL pushdown technology, the benefits of this data reduction method extend beyond reduc-
ing file/object access to reducing network load, improving task scheduling and overall performance.
Such a technology nicely complements the SQL pushdown technology to handle the situations when
data sets are composed of many small to medium size objects for which the meta-data can be enriched
ahead of the query time.

9 Conclusions
In this document we describe the current state of the technology developed by the IOStack consor-
tium within the framework of WP4. We describe a novel solution that mitigates the problems of
executing analytics in disaggregated compute and storage clusters by exploiting the computational
capabilities of object stores. This technology addresses this challenge by enabling analytics frame-
works to delegate ETL-type and querying functions to the object store, which is in turn equipped
with a rich and flexible active storage layer. We instantiated this concept by enabling Apache Spark
SQL to offload projections and selections to OpenStack Swift, in order to execute them close to the
data. Our experiments in a production cluster with real-world datasets and SQL workloads demon-
strate that our developed technology is a practical solution for providing faster and more efficient
analytics in disaggregated clusters.

11http://crystal-sds.org
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10 Code Related Appendix
This appendix describes the various software parts that were produced or modified in WP4:

1. Stocator (WP4 produced)

2. Joss library (feature added)

3. The Storlet middleware (Open sourced + feature added)

4. Spark-csv modifications (WP4 produced)

5. Spark modifications (prototype code) (WP4 produced)

6. Spark modifications (new code) (WP4 produced)

7. Hadoop modifications (WP4 produced)

8. The CSV Storlet (WP4 produced)

10.1 Stocator

Web page https://spark-packages.org/package/SparkTC/stocator
Source Code https://github.com/SparkTC/stocator
Documentation https://github.com/SparkTC/stocator/blob/master/README.md
Continuous Integration https://travis-ci.org/SparkTC/stocator/

Stocator, an Spark to Object stores connector, has been created for WP4 in 2015 and has become
in 2016 the first industrial class connector between Spark and Swift (as of 2016, Stocator became the
default connector between Spark and Object stores for the BlueMix "Spark on demand" service. As
explained in the following, it is more general and can been extended to other Object Stores.

Apache Spark can access multiple data sources that include object stores like Amazon S3, Open-
Stack Swift, IBM SoftLayer, and more. To access an object store, Apache Spark uses Hadoop modules
that contain drivers to the various object stores.

Apache Spark needs only small set of the object store functionalities. Specifically, Apache Spark
requires the following operations: listing the containers, listing the objects of a given container cre-
ation, object read, and getting data partitions. Hadoop drivers, however, must be compliant with the
Hadoop eco system. This means they support many more operations, such as shell operations on di-
rectories, including move, copy, rename, etc. which are not native object store operations. Moreover,
Hadoop Map Reduce Client is designed to work with file systems and not with object stores. The
temporary files and folders it uses for every write operation are renamed, copied, and deleted. All
this leads to dozens of useless requests targeted at the object store. It’s clear that Hadoop is designed
to work with file systems and not object stores.

Stocator, although implementing the Hadoop is implicitly designed for the object stores, it has
very a different architecture from the existing Hadoop driver. It does not depend on the Hadoop
modules and interacts directly with object stores.

Stocator is a generic connector, that may contain various implementations for object stores. It was
initially provided with complete Swift driver, based on the JOSS package, however it can be very
easily extended to more object store implementations.

Installation and user manual can be found on line as URL mentioned in previous table.
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10.2 Joss library modifications

Web page http://joss.javaswift.org/
Source Code https://github.com/javaswift/joss
Documentation https://github.com/javaswift/joss/blob/master/README.md

Joss is a java library code which provides a Java client to Swift. Stocator uses Joss to access Swift.
We added to Joss the ability to add client defined headers to REST requests to Swift. This was crit-

ical since it enabled to add the necessery requests which permit to run the CSVStorlet for the Spark
SQL pushdown use case. This work has been a contribution of a related EU project (ForgetIT) as de-
tailed in the following patch https://github.com/javaswift/joss/commit/7ab086490085ef2ac924ef4dd60c85876740f713

The added patch supports adding general headers to Swift object upload and download opera-
tions. Example: suppose you use Swift Storlets and you want to run a storlet on a download oper-
ation. You can use addHeader to add one header specifying the storlet you wish to run, and other
headers to specify the storlet parameters:

Header header1 = new GeneralHeader (
"X−Run−S t o r l e t " ,
" S o m e S t o r l e t J a r F i l e . j a r " ) ;

Header header2 = new GeneralHeader (
"X−S t o r l e t−Parameter−1" ,
" SomeParameterName : SomeParameterValue " ) ;

DownloadInstructions downloadInstruct ions =
new DownloadInstructions ( ) . addHeader ( header1 ) . addHeader ( header2 ) ;

}

10.3 The Storlet Framework

Web page https://wiki.openstack.org/wiki/Storlets
Source Code https://github.com/openstack/storlets
Documentation http://storlets.readthedocs.io/
Tests Unit tests and functional tests
Continuous Integration https://github.com/openstack-infra/

project-config/blob/master/jenkins/jobs/projects.yaml

In WP4, we operated the following changes and additions to the Storlet framework:

• Open source the project (previously an IBM software)

• Upgrade to an Openstack informal project

• Upgrade to an official Openstack project (as of the coming micata OpenStack release)

• Multiple fixes

• Addition of a critical feature for Big data analytics: enable storlets to run at Object nodes when
byte ranges are specified

Up to June 2016, the storlet middleware gave ability to run storlets when byte ranges were speci-
fied, however the storlet was to be run at one of the proxy servers. It soon became clear that this was
a very big performance hit, and this for the following reasons:

• Spark tasks are typically assigned byte ranges and issues REST object GET requests towards
object stores that specify byte ranges
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• When a byte range GET request has to be processed by a Swift proxy node, the totality of
the object has to be sent from one of the object nodes to the proxy node, therefore numerous
concurrent such request easily can disrupt the internal network of the object store.

• Typically a Spark SQL query against a large data set will spawn many concurrent Storlet re-
quests, therefore if the storlets are run on the not so numerous proxy nodes, their CPU re-
sources will easily be bogged down, whereas when this same number of storlets are spread
over the object nodes, we can see a much milder impact in term of CPU load at the swift nodes.

10.4 Spark-csv modifications

Source Code https://github.com/iostackproject/Scoop-csv-sql-pushdown
Documentation https://github.com/iostackproject/Scoop-csv-sql-pushdown

/blob/master/README.md/

In the first paragraph of sub-section 6.1, we gave a detailed description of the changes that we
brought to this package. The Documentation is pointed to in previous table

10.5 Spark modifications (working prototype code)

Source Code https://github.com/iostackproject/Scoop-csv-sql-pushdown
Documentation https://github.com/iostackproject/Scoop-csv-sql-pushdown

/blob/master/README.md/

This code displays three scala file that were modified to enable the pushdown functionality:

• HadoopRDD.scala

• RDD.scala

• MapPartitionsRDD.scala

All of these classes are in the core/src/main/scala/org/apache/spark/rdd directory.

10.6 Spark modifications (new code)

Source Code https://github.com/eranr/spark-storlets
Documentation https://github.com/iostackproject/

Scoop-csv-sql-pushdown/blob/master/README.md

This code is similar to the prototype code except that it defines the CsvStorletRdd class as extend-
ing RDD class and not HadoopRDD. This has the following consequences:

• The code had not to mingle with the Hadoop code

• The code is mostly independent of the Spark code

• It connects to Swift through a direct usage of Joss

• Last but not least, it is no longer dependent of the "HDFS chunk size" which indeed is of no
relevance for Object Stores but which for legacy reasons commands the number of partitions
generated for a given data set.

10.7 Hadoop modifications (working prototype code)

Source Code https://github.com/iostackproject/Scoop-csv-sql-pushdown
Documentation https://github.com/iostackproject/Scoop-csv-sql-pushdown

/blob/master/README.md/

This code displays the two java files that were modified to enable the pushdown functionality:
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• FileInputFormat.java

• LineRecordReader.java

These two classes are in the hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-
client-core/src/main/java/org/apache/hadoop/mapred directory. and permit to patch the hadoop
2.7.1 code.

When testing an earlier version of the pushdown code, we discovered that the results of the SQL
queries were not always exact, this was due the fact that the regular hadoop code was filling the gap
between logical records (what should be done) and the fact that in general the byte range that defines
a Spark partition cuts the last logical record, by doing an additional read to complete the generally
last record which was broken. This code could not work when the SQL filter logics was pushed down
to the data source side since the hadoop/Spark code had no clue of how to fix broken records. The
main difference with the regular code is that when pushdown is used, we can not associate a received
record to a given byte range of the object to which it pertains. In order to solve this tricky problem,
we pushed the logics which permit to "repair" broken records to the object store side, basically by
enabling the storlet to read more than the string byte range corresponding to a given partition. The
FileInputFormat file comprises the fix which permitted to obtain with the pushdown code exact SQL
results.

The whole project (that is comprising Spark CSV, Spark and Hadoop) can be built thanks to the
BuildPushdownSpark.sh which has also been added to the same github repository.

10.8 CSVStorlet

Web page https://github.com/openstack/storlets/tree/
master/StorletSamples/java/CsvStorlet

Source Code https://github.com/openstack/storlets/tree/
master/StorletSamples/java/CsvStorlet

Documentation http://storlets.readthedocs.io/

This storlet is invoked automatically from the Spark side. Obviously the main job of the storlet is
to implement the SQL column projection and the row selection. In addition the storlet solves a tricky
problem which is comes from the fact that a Spark partition is defined as a physical byte range in
general have a partial CSV record both at its beginning and its end. This problem, which also exists
without pushdown is harder when pushdown is used where filtering is done at the Storlet side. We
solved this problem by augmenting the byte range to be read by the storlet with a sufficiently long
tail. This permits to the storlet to fix the problem as follows:

• in a first phase, the storlet will discard the prefix of the input byte stream till a record separator
is read.

• in a second phase, the storlet will handle all the following logical records from the byte stream,
while the total number of bytes is less than the Spark partition length (passed as a parameter)

• in a final phase, which starts when the number of read characters reaches the Spark partition
length, the storlet will continue to read from the byte stream till an end of record character is
encountered, process this last logical record and then stop to process the byte stream

The storlet is invoked by the Spark side mainly with following parameters:

• the string which defines the requested columns

• the string which defines the filter of the where clause to be run by the storlet

• the Spark partition length
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