
HORIZON 2020 FRAMEWORK PROGRAMME

IOStack
(H2020-644182)

Software-Defined Storage for Big Data
on top of the OpenStack platform

D2.3 Public release of the IOStack Toolkit

Due date of deliverable: 31-12-2016
Actual submission date: 31-12-2016

Start date of project: 01-01-2015 Duration: 36 months



Summary of the document

Document Type Deliverable

Dissemination level Public

State v1.2

Number of pages 46

WP/Task related to this document WP2/T2.2

WP/Task responsible URV

Leader Raúl Gracia-Tinedo (URV)

Technical Manager Gerard Paris (URV)

Quality Manager Francesco Pace (EUR)

Author(s) Raúl Gracia-Tinedo (URV), Yosef Moatti (IBM), Gerard París
(URV), Josep Sampé (URV), Ramon Nou (BSC), Marc Siquier
(BSC), Daniele Venzano (EUR), Pedro García-López(URV),
Marc Sánchez-Artigas (URV).

Partner(s) Contributing URV, IBM, BSC, EUR

Document ID IOStack_D2.3_Public.pdf

Abstract This deliverable describes the public release of stable prototypes
of IOStack for analytics-as-a-service (Zoe), block storage (Kon-
nector) and object storage (Crystal). We also describe how these
prototypes are integrated within a single administration dash-
board, resulting in a complete and unified toolkit. This docu-
ment also reports the evaluation and results obtained from the
validation of the object storage IOStack prototype using different
use-case based workloads and benchmarks. We also delineate the
future development and actions to be done in the last year of the
project.

Keywords Prototypes, specifications, evaluations.



History of changes

Version Date Author Summary of changes

0.1 10-11-2016 Raúl Gracia (URV) First draft version: Introduction, IOStack toolkit overview,
Crystal description, future development.

0.2 11-11-2016 Ramon Nou (BSC) Description of block storage filters.

0.3 14-11-2016 Gerard París
(URV)

Dashboard/monitoring, Storlets section.

0.4 15-11-2016 Daniele Venzano
(EURECOM)

Overview on Zoe.

0.5 22-11-2016 Marc Siquier
(BSC)

Bandwidth Differentiation Methods Comparison.

0.6 22-11-2016 Yosef Moatti
(IBM)

Revision of Stocator and Storlets sections.

0.7 24-11-2016 Gerard París
(URV)

First version for internal review.

1.0 12-12-2016 Raúl Gracia (URV) Revision after first round of reviews.

1.1 19-12-2016 Raúl Gracia (URV) Revision after second round of reviews.

1.2 12-01-2017 Ramon Nou (BSC) Removed Bandwidth Differentation Methods Comparison,
added IO Priorities evaluation at Arctur.



H2020-644182 RIA

DD/MM/YYYY IOStack

Table of Contents

1 Executive summary 1

2 Introduction and Motivation 2
2.1 Problems of Today’s Analytics Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Goals of IOStack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 IOStack Toolkit: A Software-Defined Storage Stack for Big Data Analytics 3
3.1 Revisiting Design Concepts in IOStack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Overview of the Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Development Progress of the Toolkit in M24 . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Integrated Administration Dashboard and Monitoring 6
4.1 Administration Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 The Zoe system 10
5.1 Zoe applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.2 Internal architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.2.1 State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2.2 Scheduling and placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.3 Back-ends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.4 User interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.5 Zoe and IOStack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6 Stocator: A Fast Spark Connector for Object Stores 13

7 Konnector: SDS for Block Storage 13
7.1 SDS Gateway: Advanced Storage Provisioning and Automation . . . . . . . . . . . . . . . . 14
7.2 Konnector: Extending the Functionalities of Block Storage . . . . . . . . . . . . . . . . . . . 15
7.3 Block Filters Designed with Konnector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

8 The Storlets Framework 16
8.1 The storlet middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
8.2 Swift accounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8.3 The Docker image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8.4 The storlet bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8.5 IOStack integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

9 Crystal: SDS for Multi-tenant Object Stores 18
9.1 Abstractions in Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
9.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9.3 Control Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

9.3.1 Crystal DSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9.3.2 Distributed Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

9.4 Data Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9.4.1 Inspection Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
9.4.2 Filter Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

9.5 Hands On: Extending Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
9.5.1 New Storage Management Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
9.5.2 Distributed IO Bandwidth Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

9.6 Crystal Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

i



H2020-644182 RIA

DD/MM/YYYY IOStack

9.7 Related Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

10 Evaluation of Crystal 26
10.1 Evaluating Storage Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
10.2 Achieving Bandwidth Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
10.3 Crystal Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

11 Future Development of the IOStack Toolkit 33

12 Conclusions 34

13 Appendix 1: Analysis of the kernel oriented Bandwidth Differentiation Filter 35
13.1 Objectives of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
13.2 Bandwidth control at the operating system level . . . . . . . . . . . . . . . . . . . . . . . . . 35
13.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

13.3.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
13.4 Bandwidth differentiation effect inside an object server . . . . . . . . . . . . . . . . . . . . . 39
13.5 Discussion of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

14 Appendix 2: Crystal Controller API 41

15 Appendix 3: Crystal Development VM 42

ii



H2020-644182 RIA

DD/MM/YYYY IOStack

1 Executive summary
Exploiting Big Data analytics is a promising but still challenging step for many companies and organizations. In
particular, the problems that may arise in this setting are related to i) lack of advanced storage administration,
ii) need of storage optimizations for analytics, and iii) the absence of flexible analytics virtualization tools.
This is specially true if we consider the large amounts of data that are usually managed by big companies in
conjunction with the heterogeneity of today’s analytics frameworks (e.g., Hadoop, Spark, etc.). Indeed, these
problems may negatively impact on the storage life-cycle of Big Data, as well as the further data processing
activity of analytics frameworks.

The IOStack project aims at solving these (and other) problems. In particular, IOStack advocates to develop
policy-driven administration models and automation mechanisms for both storage and compute clusters. This
greatly facilitates the management task of administrators in a Big Data cluster at scale. Moreover, a distinctive
point of IOStack is to open storage and compute subsystems to be easily extended with new storage opti-
mization algorithms and scheduling policies, respectively. This brings new opportunities to investigate novel
optimization strategies to improve the performance and efficiency of complex Big Data workloads. To this end,
the main outcome of the project is the IOStack toolkit: A Software-Defined Storage (SDS) Stack for Big Data
analytics.

In the first part of the present deliverable, we describe the progress of the IOStack toolkit until month
M24 and its software building blocks: Zoe (analytics virtualization), Konnector (block storage) and Crystal
(object storage), as well as other components (administration dashboard, Stocator and Storlets). We illustrate
that the toolkit is integrated and ready-to-use, with several deployments running. We also show that most of
the software already implements code quality best-practices (testing, continuous integration) and has practical
documentation for users and developers to use it.

In the second part of the deliverable we focus on Crystal: The first SDS architecture for object storage
(OpenStack Swift). We describe how Crystal implements the filter abstraction to accommodate new storage
optimizations that can be easily orchestrated via high-level policies. Moreover, we also demonstrate that Crystal
exploits the control plane to dynamically react to changing workload conditions. We provide an extensive
evaluation of Crystal in a 13-machine cluster under well-known benchmarks and trace replays of our use case
companies (Idiada, Arctur). This will lead us to perform pilot deployment in the third year of the project. We
also include a comparison of two bandwidth differentiation methods proposed on top of Openstack Swift: one
that uses Linux kernel I/O priorities, and the other one that introduces variable delay time between chunks at
middleware layer.

Finally, we overview the future development steps of the toolkit. Concretely, our objectives in the future
will be to better exploit dynamic service provisioning and explore the convergence/cooperation of compute and
storage building blocks to leverage cross-layer optimizations.

Page 1 of 46
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2 Introduction and Motivation
As the operation of companies and organizations increasingly involves more digital processes, their daily ac-
tivity inherently generates larger amounts of data that should be stored along time. Such data has been recently
acknowledged as Big Data given its volume, velocity and variety properties that, among other properties (5Vs),
make their usage complex and resource consuming [1, 2]. There are a myriad of companies in diverse sectors —
e.g., Internet of Things (IoT), Online Social Networks (OSNs), research institutions, automotive companies—
that face the challenges of Big Data; these companies require scalable and practical means not only of storing
such data, but also of extracting value from it.

To exploit these large amounts of data, Big Data analytics frameworks have rapidly become a key enabler
technology increasingly involved within the business processes of many companies and organizations [3, 4,
5, 6, 7]. The reason for this phenomenon is simple: The parallel and scalable design of modern analytics
frameworks represent a golden opportunity for diverse companies to effectively “extract value” from enormous
amounts of data they produce. Nowadays, Big Data analytics frameworks provide rich suites of processing
models, including MapReduce jobs, graph Data Bases (DBs) and parallel SQL engines, among others, which
enable data scientists to explore and analyze large datasets [8, 9, 10].

The value extracted from large datasets may adopt different forms; for instance, in the case of analyzing
logs of an e-commerce site, value may be a set of critical insights on how users behave within the site; or
perhaps, if we consider a smart grid energy company like GridPocket, value may be instantiated as a deep
understanding on the energy consumption of cities or even entire countries. Overall, this kind of information
enables companies to take better and faster decisions, which make them more competitive than before.

2.1 Problems of Today’s Analytics Platforms

Unfortunately, despite its potential, leveraging Big Data analytics at scale involves managing a complex ecosys-
tem composed of storage systems and analytics frameworks, which has associated important administration and
performance challenges, among others. In this project, we target the following ones:

Lack of advanced storage management for analytics. The first problem of Big Data analytics is at the
storage layer, that is, where data lives. Most storage systems used in Big Data analytics (K/V stores, object
storage, block storage) are scalable and provide high availability [11, 4, 12, 13], but lack from simplified and
fine-grained management models. For instance, automation tools for storage provisioning and tiering (contain-
ers, block volumes) are still very early in many cases, which involves important efforts from an administrator
viewpoint. Even worse, the lack of advanced management models prevents administrators from easily adapting
the storage system to specific applications, in/out data flows, as well as providing specific Quality of Service
(QoS) levels to tenants sharing a storage cluster.

Need for extensible storage optimizations: In a shared Big Data platform, the storage system may be
subject to concurrent and heterogeneous workloads. For instance, we can imagine a storage cluster continuously
storing data from IoT measurement devices or server logs. At the same time, one or many data analytics
frameworks may be extracting data from the storage system for executing SQL queries. In this scenario, we
believe that the storage system should be open to be extended with new optimization mechanisms to cope with
such varied workloads. To illustrate this, if we retake the previous example and consider that IoT devices store
compressible data, we could deploy a data compression or reduction technique on this particular data flow to
save storage space. Similarly, in the case that an analytics application fetches a dataset to execute a SQL query,
we could extend the storage system with a mechanism to discard useless data before serving it, which may
significantly improve transfer performance.

Simple and definable deployment of analytics is a must. At the compute level, administrators deploying
analytics frameworks waste important resources and time to perform the necessary configuration and setup
tasks. If we consider a datacenter aiming at providing Big Data analytics in the cloud, it is clear that an
advanced tool is needed for rapidly configuring and deploying a wide variety of analytics. Moreover, such
a tool should be able of orchestrating and scheduling running analytics within a cluster in order to provide
predictable completion deadlines.

In technical terms, these problems may negatively impact on the storage lifecycle of Big Data, as well as

Page 2 of 46
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the further data processing of analytics frameworks. Clearly, this may reduce the competitiveness of Euro-
pean companies aiming at benefiting from Big Data analytics, as they can face significant administration and
optimization obstacles.

2.2 Goals of IOStack

Solving these (and other) problems is the main objective of the IOStack project. To this end, the main outcome
of this project is the IOStack toolkit1, which, among other assets, achieves the following key contributions:

• The IOStack toolkit materializes Software-Defined Storage (SDS) models that can overcome the lack
of advanced administration and management capabilities of storage systems for analytics. This includes
policy-based provisioning and automation features to greatly facilitate the task of system administrators
to manage storage for analytics services. Moreover, real-time and off-line monitoring tools are available
for administrators to take decisions based on workload characteristics.

• To meet the storage needs of modern analytics, our toolkit targets to open the storage system used in an-
alytics workflows with non-anticipated functionalities and optimizations for improving the performance
and efficiency of the whole Big Data lifecycle. We built a framework for object and block storage
—OpenStack Swift and Cinder, respectively— that is capable of injecting new code, in form of an ab-
straction named filter, that enriches the functionalities of the system, even on-the-fly. System developers
can also equip filters with control algorithms that dynamically change the behavior of the storage based
on real-time monitoring metrics.

• At the compute layer, the IOStack toolkit leverages automated and simplified deployment of analytics
frameworks. The concept of policy is also applied in this context: Administrators write simple deploy-
ment policies or descriptors to spawn entire clusters of analytics in seconds via lightweight container-
based virtualization (Docker). Furthermore, running analytics instances can be then intelligently sched-
uled via policies that help administrators at predicting the execution of analytics in shared clusters.

As we describe in this document, the IOStack toolkit is a ready-to-use prototype, with several deployments
currently running. We also show in this document (and in the other M24 deliverables) how the toolkit already
solves problems in multiple aspects of the Big Data lifecycle of our use-case companies (Arctur, Idiada and
GridPocket).

3 IOStack Toolkit: A Software-Defined Storage Stack for Big Data Analytics
In the following, we revisit the main design concepts already presented in Deliverable 2.2 to understand how
they have been instantiated at each building block prototype. We also describe the current progress of the
building blocks of the IOStack toolkit until M24.

3.1 Revisiting Design Concepts in IOStack

Following the principles of SDS, the IOStack toolkit is designed to decouple control and data planes. The
control plane is intended to expose simple means for enabling administrators to orchestrate the underlying
system, even resorting to intelligent, real-time algorithms. On the other hand, the data plane executes the actual
logic on live workflows to enforce the services defined by the administrator at the control plane.

Concretely, to instantiate such a general design model, in IOStack we propose several abstractions. At the
data plane we find the metric and filter abstractions; at the control plane, IOStack provides a controller and
policy abstractions.

Filter2: In IOStack, a storage filter can be defined as a performance control or general-purpose data trans-
formation that applies to specific data flows. This abstraction is quite general, as it can range from data compres-
sion or caching filters to IO bandwidth differentiation. Overall, the idea is that filters extend the functionalities
of a storage system to meet requirements non-anticipated in their design.

Metric: This concept represents information of a particular aspect of the system operation at runtime. One
can think in workload metrics that describe in real time some characteristics of the workload at hand, such as

1Available at https://github.com/iostackproject.
2This abstraction only applies to the storage building blocks, not for the compute building block of IOStack.
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Figure 1: IOStack software stack.

the in/out bandwidth of a tenant, the number of IOPS of a volume, and so on. But metrics can also refer to the
usage of the underlying resources, such as the CPU consumption or disk usage of storage servers.

Controller: A controller is an algorithm that receives as input workload metrics to manage the behavior of
the system at runtime.

Policy: Contract with the SDS system to provision a service/resource to a tenant. This is the main mecha-
nism for datacenter administrators to interact with the IOStack toolkit.

A key strength of IOStack is to simplify the management of data storage and analytics application deploy-
ments via policies. To enforce complex policies, the IOStack control plane builds a distributed layer to deploy
arbitrary controllers; to wit, a developer can design a controller to manage the execution of storage filters, or
controllers for dictating under which conditions an analytics deployment should scale. In this sense, IOStack
controllers use runtime workload or resource metrics to take dynamic decisions; for instance, the IO bandwidth
of containers/volumes or the CPU usage of compute instances. Moreover, in terms of storage, IOStack lever-
ages the storage filter abstraction as a mean of executing computation of storage flows to optimize or provide
added value services on specific workloads, such as data compression, caching or bandwidth differentiation.

In the following, we will overview the building blocks that constitute the IOStack toolkit, and we will
describe how these building blocks mapped the previous design concepts in their respective domains.

3.2 Overview of the Toolkit

This section provides a high-level overview of the building blocks of the IOStack toolkit, as well as the rela-
tionships among them. As visible in Fig. 1, the architecture of IOStack toolkit can be divided into four main
building blocks: Administration, Analytics-as-a-Service, Block Storage and Object Storage.

Administration. The IOStack web dashboard is the single point of access to all IOStack services. It
integrates the other building blocks in a simple and functional web interface, allowing an administrator to
manage the underlying services more easily via policies. The dashboard also integrates the monitoring services
that present useful performance and activity information that can be used to take administrative decisions based
on workload characteristics.

Analytics-as-a-Service (Zoe). Zoe is the compute component of IOStack: It provides a simple way to
provision data analytics clusters and workflows using Docker containers. With Zoe, administrators can use the
IOStack dashboard for launching complex data analytics frameworks in a few clicks, or use the APIs to call
Zoe from your own scripts. Zoe is independent from applications. A generic application description language
is used to build compositions of analytics services, define resource constraints and configuration options. For
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example, a user can run Spark or MPI jobs on Zoe, by providing appropriate descriptions and Docker images.
Moreover, Zoe exhibits high performance: it can create a fully configured Spark cluster, with 20 compute nodes
and an iPython notebook in a few seconds. Zoe is built from the start to make full use of the available capacity
in your Docker Swarm cluster. Not only Zoe is smart in placing containers, but when resources are exhausted,
Zoe will queue new requests using state of the art scheduling algorithms.

Block Storage (Konnector). In IOStack, Konnector is the SDS framework for block storage (OpenStack
Cinder). Konnector is instantiated on the “client side” and it provides to the consumer node applications a
virtual storage device (VSD). The key feature of Konnector is to implement the filter abstraction at the block-
level: A Konnector instance intercepts IOs from the client VM to the storage array and it can add arbitrary
computations on the read/write path of these IOs, such as compression and encryption filters. From a design
perspective, multiple Konnector VSD devices are managed by the SDS controller. The SDS controller itself
is managed through a higher level programming interface and policies. The management of the virtual block
storage controller is through the SDS controller, the role of which is to instantiate and control the virtual devices
and their filters. The SDS controller keeps all the metadata of the virtual device, allowing the virtual device to
be instantiated anywhere in the datacenter without regard to physical storage devices.

Object Storage (Crystal). Crystal is the first SDS architecture for object storage (OpenStack Swift) to
efficiently support multi-tenancy and heterogeneous applications with evolving requirements. Crystal adds a
filtering abstraction at the data plane (e.g., Storlet filters) and exposes it to the control plane to enable high-level,
yet powerful, policies at the tenant, container and object granularities. Crystal translates these policies into a set
of distributed controllers. As a result, Crystal offers a great deal of flexibility to dynamically adapt the system
to the needs of specific applications, tenants and workloads.

Apart from the flagship building blocks, IOStack also contributed other components that are very important
for the operation of the toolkit. On the one hand, in the context of IOStack we developed Stocator, a fast and
efficient Spark driver to connect Spark to Swift. As we will see later on, Stocator enables us also to trigger
custom computations on Swift from Spark, which can be exploited to accelerate analytics. On the other hand,
in the IOStack project we open-sourced and contributed to the OpenStack Storlets project; this technology
allows to execute sandboxed computations on Swift storage requests, opening the door to the implementation
of a wide variety of filters in object storage.

It is worth mentioning that despite the fact that the IOStack building blocks are completely integrated and
accessible within the administration dashboard, this does not prevent them to be exploited separately based
on the necessities of a company. This model is flexible and maximizes the exploitation opportunities of the
project’s outcomes.

IOStack toolkit in action: Let us illustrate how these pieces work together in relation with the use cases
of IOStack. From the administrator perspective, Arctur operators can rapidly deploy analytics applications in
containers via the IOStack dashboard with few clicks, as well as monitor their execution, thanks to Zoe.

For example, Arctur administrators can deploy a Spark instance for GridPocket in order to execute SQL
queries on IoT data stored in OpenStack Swift, which is being generated by their smart energy meters. With
IOStack, connecting Spark to an object store like Swift is much more efficient than before thanks to the Stocator
driver. Moreover, Crystal provides a rich layer of SDS services on top of the object store. That is, Arctur
administrators can easily add a data compression filter to reduce the storage space consumed by smart meters
storing redundant data. Even more, Arctur administrators can deploy active storage filters —implemented as
Storlets for security and isolation— that optimize GridPocket SQL queries making the object store able to
perform calculations close to the data.

As another usage example, IOStack enables Arctur administrators to deploy other types of applications,
such as MPI parallel programs used by Idiada car crash simulations that manage data from block volumes.
That is, apart from connecting to object stores, analytics applications virtualized with Zoe can also use block
storage as a storage layer, either as physical volumes or by exploiting nested virtualization. In this scenario, the
block storage part of IOStack helps Arctur administrators to deploy block volumes with different characteristics,
according to a set of policies (e.g., network, storage tier, etc.). Moreover, IOStack also instantiates the concept
of filter in the block storage world (OpenStack Cinder) thanks to Konnector: An administrator can mount a

Page 5 of 46



H2020-644182 RIA

DD/MM/YYYY IOStack

Building Block Filter Metric Controller Policy
Zoe N/A Docker/application metrics Distributed controllers Application deployment descriptors
Konnector Block filters Cinder volumes storage metrics Distributed controllers Block volume policies
Crystal Object filters Swift metrics framework Distributed controllers DSL-like policies on tenants/containers

=Implemented and used, =Available and future usage planned, N/A=Not Applies

Table 3.2a: Development progress of IOStack abstractions in the toolkit’s building blocks.

volume for Idiada analytics with a pipeline of storage filters, such as caching or compression. This innovation
allows cost reduction and performance improvements for analytics running in block volumes.

3.3 Development Progress of the Toolkit in M24

In this section, we discuss the development status of IOStack toolkit building blocks and the maturity of their
respective abstractions. Table 3.2a may help the reader to understand the progress of the toolkit until M24.

Implemented abstractions in building blocks. As visible in Table 3.2a, most abstractions are already
implemented in all building blocks of IOStack, according to our design.

First, all the building blocks already provide simplified policy-based provisioning; that is, the service layer
that administrators can orchestrate is exposed via user-friendly policies and rules, avoiding the complexities
of low level cluster management. As we will see later on in this document, Konnector, Crystal and Zoe help
administrators to manage block volumes, object storage services and analytics deployments, respectively. For
instance, Zoe offers policies in form of descriptors to deploy analytics applications, whereas Konnector enables
to specify via its API or a dashboard form the creation and customization of block volumes. In addition, Crystal
proposes a user-friendly DSL to provision SDS services in OpenStack Swift.

Second, all the building blocks also provide monitoring information to the control plane via the monitoring
service, which is also presented to administrators in the dashboard monitoring panel. In the case of Zoe, the
system can provide monitoring information of the Docker instances as well as the analytics running inside.
Currently, Konnector gathers monitoring information of the filter framework installed at VMs mounting block
volumes (IOPS, bandwidth); this opens the door to control the behavior of filters at the client side. Moreover,
Crystal builds a metrics framework that allows administrators to deploy new metrics on-the-fly to orchestrate
the behavior of controllers.

Moreover, in terms of storage, both Crystal and Konnector provide rich filter abstraction for both Swift and
Cinder, respectively. In fact, both systems provide system developers with a filter framework that enables to
develop code that intercepts storage flows.

Future development on dynamic provisioning. The last step in the IOStack toolkit road map is to fully
exploit the dynamic provisioning of services, which is in turn the most complex aspect of the architecture.

The control plane of IOStack already provides means of deploying controllers that dynamically react to
workload changes based on monitoring metrics. However, we have not yet exploited these controllers in i)
Konnector to dynamically manage block filters, such as bandwidth control, and ii) Zoe to dynamically control
the deployment of analytics frameworks, such as the scale in/out of instances based on resource metrics. In
our view, the development efforts in these scenarios should be preceded by a research phase to discern when
dynamism makes sense and can really benefit use cases. On the other hand, in the case of Crystal we already
make use of controllers to dynamically manage the execution of filters.

4 Integrated Administration Dashboard and Monitoring
4.1 Administration Dashboard

The various building blocks that make up the IOStack toolkit are accessible through their respective APIs and
can be independently integrated in third-party projects. In fact, this is a fundamental requirement in order to
encourage the use of project results.

However, presenting all the building blocks together in an integrated toolkit offers the opportunity to visu-
alize the relationships and interactions of the different components more clearly. To do so, we have extended
Openstack Horizon, the canonical implementation of Openstack’s Dashboard. Horizon provides a web based
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Figure 2: SDS Administration in the IOStack Dashboard.

user interface to various OpenStack services including Nova, Swift, etc. Our dashboard aims at providing a
simple and functional interface to the toolkit, in order to ease its adoption by the enterprise community.

During the last year, all building blocks have been integrated in the web dashboard and all of them are now
deployed and working in the Arctur testbed.

Our Horizon extension adds a new SDS Controller menu with four sections: Object Storage, Block Storage,
Zoe and Data Exploration.

Object Storage section allows to invoke Crystal API actions from a web interface. It greatly simplifies the
management of filters, metrics and policies. The administrator can upload new filters and metrics and define
policies (using the Crystal DSL or a web form). The administration panel also offers more advanced features
like creating groups of tenants or object types that maximize the specificity of the defined policies.

One of the main benefits of the object storage administration panel is that it helps figure at a glance which
metrics are enabled or which policies are currently active. Information about the current status of the object
storage cluster nodes is also provided at runtime, offering an option to restart them if they stop working.

This section also offers a pre-defined set of graphics that show real-time monitoring information (Fig. 3,
left). This Storage Monitoring panel shows two different kinds of monitoring data: system resources usage
and object storage activity. System resources data is obtained with collectd3, a small daemon that runs on
each host to be monitored, collects statistics about the system and provide mechanisms to forward the samples
via the network to be centrally aggregated. Object storage monitoring information is obtained with our own
metrics middleware that intercepts Swift requests and performs real-time measurements like the number of GET
operations per second of a tenant (see Section 9.4. As we will see later on, all these monitoring information is
sent to Logstash, stored in Elasticsearch and visualized with Kibana.

Block Storage section allows an administrator to define storage policies and storage groups, and to create
SDS volumes based on these storage groups. Storage policies support filter pipelining, i.e. define a set of
filters that will be executed one after the other for the same data blocks. Once a particular policy is defined,
the administrator can create a storage group selecting the policy and the storage nodes that will form the group.
Then, in the SDS volumes tab, the administrator can create an SDS Volume for this group. Once this volume is
attached to an instance, read/writes to this volume will have the previously defined policy applied to them.

The block storage section also offers a monitoring panel, that with the help of additional code based on
Elasticsearch and Kibana, helps to monitor performance of individual volumes and of underlying RAIDs and
disks in the storage nodes.

Zoe integration allows an administrator to create application executions by configuring the number of work-
ers and memory limits. The Zoe executions panel offers details of each execution like the scheduled time, the
status, and information about each service endpoint URL.

3https://collectd.org

Page 7 of 46



H2020-644182 RIA

DD/MM/YYYY IOStack

Figure 3: Object storage Monitoring in the IOStack dashboard (left). Zoe Monitoring in the IOStack Dashboard
(right).

Monitoring is also integrated in this section (Fig. 3, right), showing graphical information of CPU and
memory usage at the application and host level, as well as the number of containers per host. This monitoring
solution was built combining 3 open source projects and custom tools developed to cater to IOStack specific
needs; as it was explained in Deliverable D5.1, collectd was chosen for metrics gathering, Carbon/Graphite for
storage, and Grafana for metrics visualization.

Finally, in Data exploration section, we use Kibana as an off-line monitoring tool (data exploration) that
allows an administrator to explore data and create new plots and dashboards that may be useful to take decisions
based on workload characteristics. Kibana is an open source data visualization plugin for Elasticsearch. It
provides visualization capabilities on top of the content indexed on an Elasticsearch cluster. Users can create
bar, line and scatter plots, or pie charts on top of large volumes of data. These plots can be combined to create
custom dashboards that help administrators get an overview of the system.

4.2 Monitoring

Summarizing what we have outlined in the previous section, we see that the monitoring is a key part of IOStack
toolkit. Monitoring data is used to:

• Define dynamic policies that react on workload changes and to have a control feedback to implement
these policies.

• Have real-time monitoring in a web dashboard.

• Have off-line monitoring tool that allows to explore the data and helps administrators decide which
policies can be applied to improve system performance.

In figure 4 we can see the monitoring data flow from the different components that collect or generate
data, to the components that store and consume them. CollectD is used by the different building blocks to
collect monitoring information from storage or compute systems. IOStack control plane captures monitoring
information with RabbitMQ, a Message Oriented Middleware (MOM) broker that provides high-performance
event processing service.

To provide a clear organization of monitoring events, we instantiate a queue per input metric type. That is,
all the events related to the IO transfers of storage nodes will be inserted into one queue, whereas events related
to the storage capacity of storage nodes will belong to another queue. By doing this, we ease the consumption
of monitoring events from the viewpoint of workload metric processes.

By default, CollectD provides interesting information about the physical usage of the storage system, in-
cluding the IO capacity or the current CPU state of a storage node, to name a few. Apart from information
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Figure 4: High-level overview of IOStack monitoring layer. As can be observed, the IOStack control plane
serves as a centralized recipient for most monitoring information sources. Such monitoring information is then
consumed by control algorithms that may dynamically change the behavior of building blocks.

about the physical resource utilization, we generate monitoring information concerning the OpenStack service
at hand (e.g., Swift). That is, we are capable of extracting workload metrics related to the logical viewpoint of
the service, such as the read/write throughput (i.e., MBps) of a tenant within a time interval, or the number of
GET/PUT requests performed by a tenant. This approach represents a more accurate notion of the workload
supported by the service and enables us to track and analyze the activity of tenants and enforce the appropriate
filters on them.

Moreover, we can generate and inject arbitrary types of monitoring events to the system, for their further
exploitation by different types of dynamic policies. For instance, we could monitor the compressibility of data
objects that are transferred to/from the system. Such kind of policies can be achieved in IOStack by introduc-
ing processes than generate the desired metrics and send the values to RabbitMQ. We already demonstrated
this feature by providing one of such custom metrics regarding the IO bandwidth exhibited by tenants and
containers.

IOStack monitoring provides a high degree of precision related to the storage monitoring, defining monitor-
ing events at the tenant and container/volume granularity. This high degree of precision allows workload metric
processes to enable triggering policies also at the tenant and container/volume granularity, because there is a
degree of dependency between the resolution of monitoring information and the definition of dynamic storage
policies.

As depicted in figure 4, workload metric processes also send monitoring information to an Elastic stack
(Logstash, Elasticsearch and Kibana)4. Logstash is a dynamic data collection pipeline that is able to ingest
data from a multitude of sources simultaneously, transforms it, and then routes it to a variety of outputs (in
Elastic stack, data is sent to Elasticsearch). Elasticsearch stores all the monitoring data and acts as the search
and analytics engine. On top of the content indexed by Elasticsearch, Kibana provides dynamic visualization
capabilities. As said in the previous section, Kibana is used both for real-time and off-line monitoring.

Finally, it is worth mentioning that control plane gets data from all building blocks. This make it possible
to consider the application of "cross-layer" optimizations, for example between compute and object storage
building blocks.

4Zoe also provides standalone monitoring for custom metrics. The reason for this is that the IOStack control plane and Zoe had
parallel development paths to avoid dependencies at the beginning of the project. We plan to integrated in the IOStack control plane all
the monitoring components of the project to offer a unified version of the toolkit.
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5 The Zoe system

Web page http://zoe-analytics.eu/
Source Code https://github.com/DistributedSystemsGroup/zoe
Documentation http://docs.zoe-analytics.eu/
Continuous Integration https://travis-ci.org/DistributedSystemsGroup/zoe
Mailing List http://www.freelists.org/list/zoe

Zoe was created in August 2015 as an open source project [14] to satisfy the need of having an easy and
integrated way to deploy distributed analytic applications on a cluster of physical or virtual machines. Users
can define analytic applications starting from a number of ready-made building blocks, Zoe will schedule and
deploy them matching resources requests and availability.

Zoe is developed in Python and is conceived as a thin layer that builds on top of an existing low-level cluster
management system, which is used as a back-end to provision resources to applications. Raising the level of
abstraction to manipulate analytic applications is beneficial for users and ultimately to the system design itself:
application scheduling decisions can be taken with a small amount of state information, and do not happen at
the same (extremely fast) pace at which low-level task scheduling does.

Next we overview Zoe’s software design and implementation. In the final part of this section we will
describe the role of Zoe in IOStack. Deliverable 5.2 contains more in-depth information about Zoe, including
the road-map and community engagement information.

5.1 Zoe applications

Zoe schedules applications. Each application is made of one or more components, that run each in its own
Linux container. For example, the Spark Notebook application that a user submits to Zoe is made of one
Jupyter Notebook[15] component, one Apache Spark[16] master and one or more Apache Spark workers.

In order to produce useful work, in this case for the application to be useful to the user, there is a core set
of components that can be identified: the notebook, the master and just one worker. The application can mark
additional workers as “optional” (elastic in Zoe’s terminology). Zoe will start them only if there are free and
unused resources.

To simplify application descriptions and build a library of building blocks, an intermediate concept of
frameworks (groups of components that work together) has been introduced.

Zoe applications are described by users via a simple JSON description that follows a high-level configu-
ration language (CL) to specify applications, frameworks and components with their classes (core or elastic),
resource reservations and constraints. The CL is simple and extensible: it aims at conciseness and, with frame-
work templates, can be also used by “casual”, in addition to “power” users [17]. An example of the simplicity
and effectiveness of the Zoe CL, building a batch application for the distributed version of Tensorflow[18], only
required less than 25 lines of CL.

A typical Zoe application description contains a number of application-global metadata items, such as size
information for the size-based scheduler. Then it contains a list of the components, each with its own metadata,
that includes:

• image: the Docker image location for the component

• environment: the environment variables that are used to configure the component

• volumes: external storage to mount inside the container

• resources: the resource reservations required to run one instance of this component

• total count: the total number of instances of this component that can be started

• essential count: the minimum number of instances (out of total count) required for the application to
produce useful work
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Currently a number of scripts help users create these application descriptions, but we are planning and
developing a web-based tool in the style of an app-shop where users are free to compose and configure their
own applications in a more intuitive way.

5.2 Internal architecture

Zoe is divided into two multi-threaded processes. The Zoe Master and the Zoe API. Both store state information
into an external Postgres database, that has well-known reliability and fault tolerance characteristics.

Users interact with the Zoe API process. It offers the web interface and the REST API and does an initial
validation of user input and application descriptions.

The Master process contains the scheduler and other threads to process events generated by the back-
end, manage asynchronous application termination and respond to requests coming from Zoe API. The two
processes use a Zero-MQ based protocol, that has been developed taking in all the recommendations to build a
robust protocol in the face of crashes or disconnections.

The Master and the API processes do not store any state internally and can be restarted at will in case of
upgrades or crashes without any consequence. The API process can be scaled horizontally behind an http-based
load balancer.

5.2.1 State

Three main tables are maintained in the state store, the platform table, the executions table and the service table.
In this context, executions are instances of Zoe applications, while services are instances of components.

The platform table stores information about the number of containers and the amount of free resources for
each node available in the cluster. This information is taken as-is from the back-end API and stored into the
database for caching reasons. Each entry describes the resources (memory, cores and containers) free and total
for one single node. Data is updated whenever the scheduler is triggered.

Each entry in the execution table refers to a single application execution submitted by the user. It records
information such as:

• identifier of the user who submitted the application

• timestamps of submission, start and termination events

• current status (submitted, running, error, etc.)

• error message in case the execution failed due to an error

Each entry in the services table refers to a single instance of a component. As was explained in the previous
sections, application descriptions contain a list of component with total and essential counts for each of them.
These descriptions are exploded into the state table in as many services as is the total number of instances
requested. The information recorded for each instance is:

• status: the service status from Zoe point of view

• backend status: the container status from the back-end point of view

• backend identifier: the unique ID the back-end uses to identify this container

• service group: the component name as given into the application description

• error message: filled in when there is an error during the container lifetime (for example image not found
or out-of-memory termination)

5.2.2 Scheduling and placement

The scheduler thread is triggered by several events:

• an execution being added to the scheduling queue

• an execution that terminates, either by itself (batch) or by the user
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• a timer, to account for resources that are used outside of Zoe’s control.

When the scheduler is triggered and selects an application execution to start, according to the configured
policy, it performs a placement simulation, trying to find the best fit of core and elastic services in order to
maximize the number of running executions. Executions for which all core services cannot be started at the
same time are left in the queue, in order to start only executions that can produce useful work.

The placement simulation uses a simple filter-and-sort algorithm. For each container to be placed it filters
out nodes that do not match the required resource constraints (amount of memory, but also special hardware
needs can be taken into account). The container will be placed in the node with the least amount of running
containers and the biggest amount of free memory.

This procedure is repeated for each service until either:

• all core services are placed: then the execution is started, following the simulated plan

• a core service cannot be placed: the execution is re-added to the queue and the simulation results are
thrown away

The same filter-and-sort algorithm is used to take placement decisions in most modern cluster manager
systems, like OpenStack Nova and Docker Swarm.

5.3 Back-ends

The main design idea of Zoe is to hide the complexities of low-level resource provisioning from application
scheduling and use an existing cluster management system, for which many alternatives exists, instead. Cur-
rently, Zoe builds on top of Docker Swarm and uses it for orchestration, dependency management, resource
isolation, naming and networking.

5.4 User interaction

Users can interact with Zoe through a web or a command-line tool. The web interface provides an high level
overview of the application executions for each user and their status. The command-line tool is more advanced
and, for example, can be used to script the execution of multiple batch applications, creating simple automated
workflows. Zoe has also a REST client API that can be used to develop more tools and services.

When an application is submitted, via REST, command-line or web interface, Zoe creates an entry in the
application state store, and adds it to a pending queue. Our system allows plugging several scheduling policies
to manage the pending queue, ranging from simple to sophisticated size-based strategies. The scheduler strives
at making sure the application selected for execution can make progress as soon as resources are allocated to
it: to this end, it relies on the back-end to place all core components according to the simulated plan. Elastic
components are scheduled when possible and contribute to decreased application run-time. As a consequence,
batch applications (either rigid like Tensorflow or MPI, or elastic such as Spark) can make progress as soon as
core components start; similarly, interactive applications – which can be given precedence to reduce queuing
times and improve user experience – can also start being used even if not all elastic components (if any) are
scheduled.

5.5 Zoe and IOStack

IOStack promotes the separation of compute and storage layers allowing increased flexibility in meeting the
variable demand of computation resources, while keeping the data storage system in a stable state. Zoe targets
the compute layer of IOStack, by providing a simple way to define and deploy arbitrary analytic applications.

Zoe has been integrated into the IOStack dashboard to give users a single point of access to all IOStack
services. Zoe applications can use the storage services offered by the other IOStack components directly (Swift)
or through the back-end (volumes). In the last year of the project we envision an even tighter integration with
information flowing from the Zoe scheduler to the SDS controller and vice-versa, opening the possibility of
automatically taking informed decisions about application scheduling and storage features at run-time.
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6 Stocator: A Fast Spark Connector for Object Stores

Web page https://spark-packages.org/package/SparkTC/stocator
Source Code https://github.com/SparkTC/stocator
Documentation https://github.com/SparkTC/stocator/blob/master/README.md
Continuous Integration https://travis-ci.org/SparkTC/stocator/

Apache Spark can access multiple data sources that include object stores like Amazon S3, OpenStack Swift,
IBM SoftLayer, and more. To access an object store, Apache Spark uses Hadoop modules that contain drivers
to the various object stores.

Apache Spark needs only a small set of the object store functionalities. Specifically, Apache Spark requires
the following operations: listing the containers, listing the objects of a given container creation, object read, and
getting data partitions. Hadoop drivers, however, must be compliant with the Hadoop eco system. This means
they support many more operations, such as shell operations on directories, including move, copy, rename, etc.
which are not native object store operations. Moreover, Hadoop Map Reduce Client is designed to work with
file systems and not with object stores. The temporary files and folders it uses for every write operation are
renamed, copied, and deleted. All this leads to dozens of useless requests targeted at the object store. It’s clear
that Hadoop is designed to work with file systems and not object stores.

Stocator, although implementing the Hadoop is implicitly designed for the object stores, it has a very
different architecture from the existing Hadoop driver. It does not depend on the Hadoop modules and interacts
directly with object stores.

Stocator is a generic connector, that may contain various implementations for object stores. It was initially
provided with complete Swift driver, based on the JOSS package5, however it can be very easily extended to
more object store implementations.

7 Konnector: SDS for Block Storage

Source Code https://github.com/MPSTOR/Konnector
API specifications https://github.com/MPSTOR/Konnector/blob/master/Konnector-API.adoc

In many scenarios, the execution of data analytics jobs involve alternative storage substrates, such as block
storage[C]. In general, compute nodes executing analytics and storage arrays are physically disaggregated,
which simplifies the management of a datacenter infrastructure. Thus, similarly to the usage of a physical disk
or SSD, compute nodes interact with a storage array via standard block-level IO protocols (e.g., iSCSI) that
operate through a high speed network link (e.g., 10GBps, fiber channel).

Once provided a block storage communication protocol, compute nodes can mount logical volumes that
map physical storage space of the storage array for managing data. For instance, in the Idiada use-case, data
scientists execute car crash simulations on VMs making use of file systems that mount volumes on large storage
arrays. This makes life easier for Idiada’s data scientists: they write analytics code that manages data from a
large storage cluster, just as they would do in a file system of a single machine on top of a traditional HDD.

Although being a commercial standard, block storage arrays are normally proprietary closed systems, often
complex to manage, and they are perceived as expensive. But more importantly, storage arrays being mission
critical systems are slow to evolve, which results in an inflexible innovation platform. In contrast to block
storage arrays, compute nodes have an open software architecture and they can execute an increasingly varied
types of analytics. This mismatch is true even in the case that some storage arrays can be delivered with a fixed
set of built-in storage features —e.g., de-duplication or replication—, given that implementing a new feature or
adapting the existing ones to the particular necessities of Big Data analytics is not practical.

In IOStack, the SDS toolkit provides a framework to manage block storage arrays (SDS Gateway) and ex-
tend their functionality by providing a filter stack on the open compute platform (Konnector). In the following,
we briefly overview these components; a full description of the SDS toolkit for block storage can be found in
deliverable d3.2.

5http://joss.javaswift.org
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Figure 5: Overview of the SDS Gateway and Konnector block storage components.

7.1 SDS Gateway: Advanced Storage Provisioning and Automation

The IOStack SDS Gateway is the tool that enables administrators to manage storage volumes in an automated
way. In particular, in an OpenStack environment, it allows an administrator to provision block storage according
to a defined policy. Following the principles of SDS, the SDS Gateway allows the user to choose a volume type,
this volume type is tagged to the compute group within which is configured with a set of storage arrays, storage
tiers, fabrics and consumer node filter functions. When a volume is created within this storage group the SDS
Gateway virtualizes for the user all the operations of choosing which storage array, fabric and media tier to use.
This greatly simplifies the process of provisioning storage. The second step of attaching a storage array volume
and creating on the consumer node a filter stack is also fully automated process. These complex provisioning
tasks reduce the cost of provisioning managed storage by removing the need of the user to know anything about
the datacenter internals and simply use the services created by the the datacenter administrator. This is specially
true considering that all these options are exposed within the IOStack administration dashboard.

Technically, the SDS Gateway provides a REST API for a client to manage storage. In Fig. 5 the client is
the OpenStack Nova Cinder controller. The Cinder API commands are translated and forwarded to the SDS
Gateway. The SDS Gateway maintains an object model which is configured by the Horizon Dashboard SDS
plugin.

The SDS plugin for the Horizon dashboard creates storage groups, a set of storage nodes are added to each
storage group. Associated with each storage group is a policy. The policy configures configures default storage
options for all volumes provisioned within that storage group. Some of the options are storage node specific,
such as the fabric to export the volume on, other options are specific to the compute node —namely, consumer
node— where the storage volume is attached to.

The consumer node specific component is a description of the filter that that is dynamically built once
the storage volume has been attached to the consumer node. Once a storage volume has been attached to a
consumer node, the SDS Gateway uses the Konnector API to dynamically create a filter stack between the
attached volume and the volume presented to the final consumer, for example a VM. This operation is shown
in Fig. 5 call-outs 5,6,7,8. This schema allows storage volumes to be created on storage nodes and a stack of
dynamic storage functions to be applied to the storage volume independent of the storage node.

As we show next, the Konnector component leverage compute node flexibility by moving storage functions
(filters) into the compute node.
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7.2 Konnector: Extending the Functionalities of Block Storage

The goal of the filter stack is to provide a flexible platform for innovation and value added functions on top of
the storage array volumes. That is, by moving the data flow from the kernel space into the “user space” filters
can be dynamically created at run time. Run time creation of the filter stack in mandatory because the volume
and its stack are only instantiated when the storage array volume is attached to the consumer node or VM.

As visible in Fig. 5, the filter stack is a layer between the terminated storage volume on the compute node
and the consumer of the storage volume, such as a virtual machine. A filter stack can provide functionality such
as encryption, compression de-duplication on the data flow between the consumer and the storage array.

In our implementation, the filter stack is dynamically created as each filter is implemented as a .so (a
dynamic linked library). The Filter manager when requested through the Konnector API will dynamically build
the filter stack using a set of .so dll library functions. This approach allows the filter stack to be built on
demand, it also allows any third party to create filter functions and add an IO processing function into the data
flow between the consumer (e.g., Virtual Machine) and the storage array volume. The storage array volume is
agnostic to the filter function since the storage array just sees data in/out of the attached storage array volume
on the consumer node, it does not see nor is aware of any of the filter transformations.

From a developer perspective, filter objects are built from C source files. The SDS toolkit provides a number
of skeleton filter samples which serves to act as a template for filter development. Developers have several API
functions to transform IO operations intercepted by connector:

• write_xform: This function exists to perform a transformation at its defined filter level on payload
write data bound for the device.

• read_xform: It is called at the same predefined filter execution level and is designed to act on the read
payload data from the device en-route to the initiator.

• pre_read: We can redirect reads to another zone of the disk.

• pre_write: We can redirect writes to another zone of the disk.

• get_name: This function can be called from the controller. This just returns the name of the filter which
is defined as a static string in the filter object. This is just added for debug purposes and is called when
the filter daemon is executed in debug mode.

• pass_args: This function allows the user to pass arguments to the filter function when the filter is
instantiated. The arguments can be specified using the syntax of the filter specification in the Horizon
dashboard.

Next, we describe some of the advanced filters that we developed making use of these API calls to improve
the Big Data processing of our use cases.

7.3 Block Filters Designed with Konnector

Source Code https://github.com/bsc-ssrg/BlockStorageFilters-IOSTACK

In the basic package of block filters, we include simple proof-of-concept ones such as a xor filter that
transforms each byte of a stream with an “exclusive OR” transformation, or a noop filter that simply intercepts
the IO flow without actually manipulating it. While useful for basic testing purposes, we still need to exploit
the filter framework to develop real-world filter for our use cases.

For this reason, we developed filters that go a step further of the original behavior of the filter framework.
The original behavior was a 1:1 block transformation (reading or writing), however, in our scenarios we need
to be able also to perform n:n transformations. For example, data prefetching or caching filters need to check
before the actual read occurs whether the content is available or not, then the framework knows if the read
should be issued to the storage array. On the other hand, in the case filters that require to modify the IO
flow, such as in the case of data compression and deduplication, require to manage their own metadata space
transparently to the real block device; this is needed it writes the real data it should know if the data should be
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written or not. As one can infer, the design of these filters may provide performance and cost reduction benefits
to real use cases, but are challenging to materialize efficiently.

In particular, we developed the following filter for our use cases and for advanced evaluation purposes:

1. Prefetch filters (prefetch)

2. Cache filters (dedupcache and compress)

3. Output modification filters (OCompress)

4. Evaluation filters (mockup)

Prefetch filter. This filter preloads data in advance to reduce network latency. prefetch filter is divided
into two filters, the first one logs the offset and sizes of the data that is being used in the VM. The second filter
preloads the data in advance. We are also going to develop a new filter on the next period that will enable
just-in-time prefetching so the blocks are only preloaded just when they are going to be used.

Cache filter. This filter stores any block read into its memory space. Its objective is to increase the
performance on workloads that are being read twice or more times. The cache is reduced using deduplication
(dedup) and compression (compress), so we can store more data with less memory usage and surpass the
buffer cache space.

Output modification filters. These filters generate a different output from the original one, such as com-
pression or encryption. The main difference is that the filter is persistent, so the output can only be read if the
same filter is used. ocompress generates a compressed file system using two compressors (for Idiada use
case). The filter is transparent for the user. However, further modifications in the filter framework are needed
to allow to export a, i.e., 6GB real volume, and present it inside the VM as a 10 GB volume. The main issue is
that the increment of space should be static and in advance (using some % gathered or introduced by the user)
and can not be changed as it will confuse the VM operating system.

Evaluation filter. This filter tries to expose several “turning knobs” or parameters to evaluate the frame-
work; for instance, we can emulate latency delays or CPU usage delays in the filter workflow. mockup filter
has those parameters, so delays are introduced on each read or write request.

8 The Storlets Framework

Web page https://wiki.openstack.org/wiki/Storlets
Source Code https://github.com/openstack/storlets
Documentation http://storlets.readthedocs.io/
Tests Unit tests and functional tests
Continuous Integration https://github.com/openstack-infra/project-config/blob/master/jenkins/jobs/projects.yaml

In the IOStack project we open-sourced and contributed to the OpenStack Storlets project, that was used
to implement a wide variety of filters for object storage.

Storlets is a framework to intercept an execute sandboxed code on object requests in OpenStack Swift.
Storlets provide a powerful extension mechanism to OpenStack Swift —without changing its code— to run
computations close to the data in a secure and isolated manner making use of Docker. With Storlets a developer
can write code, package and deploy it as a regular object, and then explicitly invoke it on data objects as if the
code was part of the Swift’s WSGI pipeline. Request interception can occur not only at the proxy but also at
the object servers thanks to the Storlet’s WSGI middleware integrated in Swift, which “wraps” storage requests
and responses.

At the high level the storlet engine is made of the components described below:

8.1 The storlet middleware

The storlet middleware is a Swift WSGI middleware that intercepts any given storlet invocation requests and
reroutes the stream of data through the Docker container in which the specified storlet is executed. The storlet
middleware is deployed both in the proxy-server and the object-server pipelines.
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Figure 6: Storlets architecture

The storlet middleware is written in a way that allows to extend the engine to support sandboxing technolo-
gies other than Docker. All what is required from given sandbox is to implement the "storlet gateway" API
which defines the functionality to run storlets.

8.2 Swift accounts

The storlet engine is tightly coupled with accounts in Swift in the following manners:

1. In order to invoke a storlet on a data object residing in some Swift account, that account must be enabled
for storlets. That is, the designated, user defined, metadata flag on the account must be set to true.

2. Each Swift account must have certain containers required by the engine. One of these containers is the
"storlet" container, in which storlets are being uploaded. After a given storlet has been uploaded from a
given account to to the "storlet" container, it can be invoked on any data object pertaining to that account,
given that the invoking user has read permissions to the "storlet" container.

3. Each account has a separate Docker image (and container) where storlets are being executed. All the
storlets that are executed on data objects belonging to some account, will be executed in the same Docker
container. This permits differentiating images as function of the Swift accounts. The Docker image name
must be the account id to which it belongs.

8.3 The Docker image

As mentioned above there is a Docker image per account that is enabled for storlets. At a high level this image
contains:

1. A Java run time environment. This is needed when you run storlets written in Java.

2. A daemon factory. A Python process that starts as part of the Docker container bring up. This process
spawns the "per storlet daemons" upon a request from the "storlet docker gateway" that runs in the context
of the storlet_middleware.
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FOR [TARGET] WHEN [TRIGGER CLAUSE] DO [ACTION CLAUSE]

TENANT T1

CONTAINER C1

SET COMPRESSION WITH TYPE=LZ4,

SET CACHING ON PROXY TRANSIENT

OBJECT_TYPE=DOCS

AND OBJECT_SIZE<10M

SET ENCRYPTION

GETS_SEC > 5

TENANT T2 SET BANDWIDTH WITH MIN_BW=30MBps

P1

P2

P3

Storage automation policies Resource management policies

Figure 7: Structure of the Crystal DSL.

3. A storlet daemon. The storlet daemon is a generic daemon that once spawned, loads a certain storlet code
and awaits invocations. Different storlets, e.g. a filtering storlet and a compression storlet are loaded into
different daemons. A daemon is invoked the first time a certain storlet needs to be executed.

4. The storlet common jar. This is the jar used for developing storlets in Java. Amongst other things it
contains the code of the interface which must be implemented by java storlets.

8.4 The storlet bus

The storlet bus is a communication channel between the storlet middleware at the Swift side and the factory
daemon and the storlet daemon in the Docker container. For each Docker container (or Swift account) there
is a communication channel with the storlet factory of that container. For each storlet daemon in the container
there is a communication channel on which it listens for invocations. These channels are based on unix domain
sockets.

8.5 IOStack integration

As we will see later in the section 9.4.2, the filter framework for object storage integrates Storlets as one
of the filter execution environments of IOStack. Storlets act as an isolated filter execution environment to run
computations on object requests with higher security guarantees. Combined with Crystal, Storlets are enhanced
with pipelining and stage execution control (i.e., proxy/storage node) functionalities.

Furthermore, IOStack web dashboard integrates the deployment of Storlets as well as native filters, allowing
an administrator to transparently define a filter pipeline that combines both kinds of filters.

In the context of the Gridpocket use case (SQL pushdown mechanism), the Storlet WSGI middleware in
Swift was extended to support running Storlets at storage nodes for byte ranges. Also, we contribute a new
storlet that can perform projection and selection filters over CSV data. This work is explained in depth in
Deliverable D4.2.

9 Crystal: SDS for Multi-tenant Object Stores
The objective of Crystal is to constitute the first SDS platform for object storage that efficiently handles work-
load heterogeneity and applications with evolving requirements. To achieve this, Crystal separates high-level
policies from the mechanisms that implement them at the data plane, to avoid hard-coding the policies in the
system itself. As mentioned in Section 3.1, it uses three main abstractions: filter, metric (or trigger), and
controller, in addition to policies.

9.1 Abstractions in Crystal

Filter. A filter is a piece of programming logic that a system administrator can inject into the data plane to per-
form custom computations. In Crystal, this concept is broad enough to include from arbitrary computations on
object requests, such as compression or encryption, to resource management such as bandwidth differentiation.
A key feature of filters is that the instrumented system is oblivious to their execution and needs no modification
to its implementation code to support them.

Inspection trigger. It is an important abstraction in Crystal whose role is to automate the execution of filters
based on the information accrued from the system. There are two types of information sources. A first type that
corresponds to the real-time measurements got from the running workloads, like the number of GET operations
per second of a tenant or the IO bandwidth allocated to a data container. As with filters, a fundamental feature
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Figure 8: Overview of Crystal’s architecture materialized on top of OpenStack Swift.

of workload metrics is that they can be deployed at runtime. A second type of source is the metadata from the
objects themselves. Such metadata is typically associated with read and write requests and includes properties
like the size or type of data objects.

Controller. In Crystal, a controller represents an algorithm that manages the behavior of the data plane
based on monitoring metrics. A controller may contain a very simple rule to enforce compression filter on
a tenant, or it may execute a complex bandwidth differentiation algorithm requiring global visibility of the
cluster. Crystal builds a logically centralized control plane formed by supervised and distributed controllers.
This allows an administrator to easily deploy new controllers on-the-fly that cope with the requirements of new
applications.

Policy. Beyond making life easy for storage administrators, our SDS model targets great programmability
for really opening the system to evolving requirements. This affects the structure of policies that should enable
the incorporation of new control algorithms, workload metrics, custom filter logic, etc., in an easy manner.

To succinctly express policies, Crystal abides by a simple structure similar to those of the popular IFTTT (If
This Then That) service [19]. This service allows users to express small rule-based programs, called “recipes”,
using triggers and actions. For example:

TRIGGER: compressibility of an object is > 50%
ACTION: compress
RECIPE: IF compressibility is > 50% THEN compress

An IFTTT-like language can reflect the extensibility capabilities of the SDS system; at the data plane, it is
not hard to infer that triggers and actions are translated into resource metrics and filters, respectively. At the
control plane, a policy is a “recipe” that guides the behavior of control algorithms. To illustrate this, Fig. 7
shows example policies: P1) enforce compression and encryption on document data objects of tenant T1; P2)
apply data caching on small objects of container C1 when the number of GETs per second is > 5; or P3) try to
provide at least 30MBps of aggregated bandwidth to tenant T2.
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9.2 System Architecture

Next, we present the design of Crystal to add advanced SDS functionalities to OpenStack Swift. Fig. 8 shows
that Crystal’s architecture consists of:

Control Plane. In Crystal, administrators provision SDS services to tenants via high-level policies. To
bring flexibility to the control plane, Crystal utilizes a DSL to express the policies in a concise manner. The
IFTTT-like structure [19] of the policies makes it very easy to define them based on the abstractions of filters,
controllers, and metrics, making the DSL system-agnostic. Further, it is extensible at runtime without side
effects on the system operation. The control plane includes an API to digest policies, but also to manage the
life-cycle and metadata of controllers, filters and metrics, as shown in Table 9.3a.

Moreover, the control plane is built upon a distributed model. Although logically centralized, the controller
is, in practice, split into a set of autonomous micro-services, each running a separate control algorithm. The
control loop is also extensible: developers can easily expose new metrics to the control plane and in this way,
capture missing workload aspects. Such metrics are then made available to new controllers automatically by
Crystal.

Data Plane. The data plane runs arbitrary computations and transformations on objects flows to satisfy
storage policies. It provides two core extension points: Inspection triggers and filters. With the inspection
triggers, Crystal provides distributed controllers with monitoring information on the state of the system at
runtime. This allows the control plane to respond to changes in input workloads in real time. Rich data plane
programmability is delivered through the filter framework, which intercepts object flows in a transparent manner
and runs computations on them. A third party integrating a new filter only needs to contribute the logic; the
deployment and execution of the filter is managed by Crystal.

9.3 Control Plane

The control plane offers advanced programmability over the data plane to manage multitenant workloads. It is
formed by the DSL, the API and distributed controllers.

9.3.1 Crystal DSL

Crystal’s DSL hides the complexity of low-level policy enforcement, thus achieving simplified storage admin-
istration (Fig. 7). The structure of our DSL is as follows:

Target: The target of a policy represents the recipient of a policy’s action (e.g., filter enforcement) and
it is mandatory to specify it on every policy definition. To meet the specific needs of object storage, targets
can be tenants, containers or even individual data objects. This enables high management and administration
flexibility.

Trigger clause (optional): Dynamic storage automation policies are characterized by the trigger clause.
A policy may have one or more trigger clauses —separated by AND/OR operands— that specify the workload-
based situation that will trigger the enforcement of a filter on the target. Trigger clauses consist of inspection
triggers, operands (e.g, >, <, =) and values. The DSL exposes both types of inspection triggers: workload
metrics (e.g., GETS_SEC) and request metadata (e.g., OBJECT_SIZE<512).

Action clause: The action clause of a policy defines how a filter should be executed on an object request
once the policy takes place. The action clause may accept parameters after the WITH keyword in form of key/-
value pairs that will be passed as input to customize the filter execution. Retaking the example of a compression
filter, we may decide to enforce compression using a gzip or an lz4 engine, and even their compression level.

To cope with object stores formed by proxy/storage nodes (e.g., Swift), our DSL enables to explicitly
control the execution stage of a filter with the ON keyword. Also, dynamic storage automation policies can
be persistent or transient; a persistent action means that once the policy is triggered the filter enforcement
remains indefinitely (keyword PERSISTENT), whereas actions to be executed only during the period where
the condition is satisfied are transient (keyword TRANSIENT).

Our DSL can be extended on-the-fly to accommodate new filters, controllers and inspection triggers. That
is, in Fig. 7 we can use keywords COMPRESSION and DOCS in P1 once we associate “COMPRESSION” with
a given filter implementation and “DOCS” with some file extensions, respectively (see Table 9.3a). This makes
Crystal’s DSL extensible, in contrast to other systems [20].
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Crystal Controller Calls Description

add_policy delete_policy
list_policies

Management API calls for creating, deleting and listing policies. The add_policy
call relies on the DSL compiler either to directly enforce the policy or to instantiate a
distributed controller.

register_keyword
delete_keyword

Calls that interact with Crystal registry to associate DSL keywords with filters, inspection
hooks or coin new terms to use in the DSL (e.g., DOCS).

deploy_controller
kill_controller

These calls are used to manage the life-cycle of new dynamic policies and workload
metric processes in the system.

Filter Framework Calls Description

deploy_filter
undeploy_filter
list_filters

Calls for deploying, undeploying and listing filters associated to a target.
deploy/undeploy_filter calls interact with the filter framework at the data plane
for enabling/disabling filter binaries to be executed on a specific target.

Workload Metric Calls Description

deploy_metric
delete_metric

Calls for deploying and removing workload metrics from the data plane.

BW Differentiation Calls Description

update_bw list_bw_slo
clear_bw_slo

Calls to assign, list and delete a specified bandwidth SLO to the given tenant. Distributed
bandwidth enforcement algorithms take as input this information in order to guarantee an
aggregated IO bandwidth share at the data plane.

*For the sake of simplicity, we do not include call parameters in this table.

Table 9.3a: Main calls of Crystal controller, filter framework and bandwidth differentiation management APIs.

The Crystal DSL implements advanced administration features: i) specialization of policies based on the
target scope, so that if several policies apply to the same request, only the most specific one is executed (e.g.,
container-level policy is more specific than a tenant-level one), ii) pipelining several actions on a single request
(e.g., compression + encryption), similar to stream processing frameworks [21], and iii) grouping, that enables
to enforce a single policy to a group of targets; that is, we can create a group like WEB_CONTAINERS to
represent all the containers that serve Web pages.

As visible in Table 9.3a, Crystal offers a DSL compilation service via API calls. Crystal compiles static
automation policies as target→filter relationships at the metadata layer. Next, we show how dynamic policies
are materialized as controllers that extend the control plane.

9.3.2 Distributed Controllers

Crystal enables the creation of distributed controllers, in form of supervised processes, which can be deployed
in the system at runtime to add new behaviors to the control plane [22, 23, 24]6.

We offer two types of controllers: dsl-generated and custom controllers. On the one hand, the Crystal DSL
transparently compiles dynamic automation storage policies into dsl-generated controllers (e.g., P2 in Fig. 7)
that interact with our filter framework. On the other hand, custom controllers are not generated by the DSL;
instead, by following a small set of conventions, Crystal enables developers to deploy controllers that contain
complex algorithms rather than simple activation rules (e.g., P3 in Fig. 7). For instance, this allowed us to
deploy distributed IO bandwidth control algorithms (Section 9.5).

Dynamic control loop: Distributed controllers can be programmed to react and adapt to changes in the
underlying storage system. Therefore, controllers must receive up-to-date inspection information from the data
plane. As we explain in the next section, Crystal exposes monitoring metrics of the current state of workloads.

Technically, distributed controllers —dsl-generated and custom— and workload metrics interact in a pub-
lish/subscribe fashion. As visible in Fig. 9, once initialized, a distributed controller subscribes to the appropriate
workload metric, taking into account the target granularity. The subscription request of a controller specifies
the target to which it is interested in, such as tenant T1 or container C1. Once the workload metric receives
the subscription request, it adds the controller to its observer list. Periodically, the workload metric notifies the
activity of the different targets to the interested controllers that may trigger the execution of filters.

9.4 Data Plane

To deal with heterogeneity, we offer two main extension hooks: Inspection triggers and a filter framework.
6Note that these controllers are also applicable to control dynamic functionalities in Zoe and Konnector.
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Figure 9: Interactions among dsl-generated controllers, workload metric processes and the filter framework.

9.4.1 Inspection Triggers

Inspection triggers enable controllers to dynamically respond to workload changes in real time. Specifically,
we consider two types of introspective information sources: object metadata and monitoring metrics.

First, some object requests embed semantic information related to the object at hand in form of metadata.
Crystal enables administrators to enforce storage filters based on such metadata. Concretely, our filter frame-
work middleware (see Section 9.4.2) is capable of analyzing at runtime HTTP metadata of object requests to
execute filters based on the object size or file type, among others.

Second, Crystal builds a metrics middleware to add new workload metrics on-the-fly. In our design, a new
workload metric can inject events to the monitoring service without interfering with existing ones (Table 9.3a).
A salient feature of our metrics framework is that it enables developers to plug-in metrics to inspect both the
type of requests and their contents (e.g., compressibility).

At the top level of our monitoring system we find workload metric processes. These processes are devised
to consume and aggregate monitoring information to be published to controllers (see Fig. 9). Each workload
metric process consumes from a different monitoring metric at the data plane. For the sake of simplicity and
isolation [24], we advocate to separate workload metrics not only per metric type, but also by target granularity.

9.4.2 Filter Framework

The Crystal filter framework enables developers to deploy and run general-purpose code on object requests.
Crystal borrows ideas from active storage literature [25, 26] as a mean of building filters to enforce policies.

Our framework achieves flexible execution of filters. First, it enables to easily pipeline several filters on a
single storage request. Currently, the execution order of filters is set explicitly by the administrator, although
filter metadata can be exploited to avoid conflicting filter ordering errors [27]. Second, to deal with object stores
composed by proxy/storage nodes, Crystal allows administrators to define the execution point of a filter.

To this end, the Crystal filter framework consists of i) filter middleware, and ii) filter execution environ-
ments.

Filter middleware: Our filter middleware is a hook to intercept data streams and classify incoming re-
quests. Upon a new object request, the Crystal middleware may contact the metadata layer to infer the filters
to be executed on that request depending on the target. If the target has associated filters to be enforced, the
Crystal middleware sets the appropriate HTTP headers in the request (e.g., GET, PUT) for triggering the filter
execution.

Filters that change the content of data objects may receive a special treatment, such as in case of compres-
sion or encryption filters. To wit, if we create a filter with the reverse flag enabled, it means that the execution of
the filter when the object was stored should be always undone upon a GET request. For instance, this yields that
we may activate data compression on certain periods, but tenants will always download decompressed data ob-
jects. To this end, we store data objects with an extended metadata to keep track of the enforced reverse filters.
Upon a GET request, such metadata is fetched by the Crystal middleware to trigger reverse transformations on
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the data object prior to the execution of regular filters.
Filter execution environments: Thanks to the interception capabilities of our middleware, it can support

multiple execution platforms. Crystal features:
Isolated filter execution: Crystal provides an isolated filter execution environment to compute on object

requests with higher security guarantees. To this end, we extended the Storlets framework [28] with pipelining
and stage execution control functionalities. Storlets provide Swift with the capability to run computations near
the data in a secure and isolated manner making use of Docker containers [29]. Invoking a Storlet on a data
object is done in an isolated manner so that the data accessible by the computation is only the object’s data and
its user metadata. Moreover, a Docker container only executes filters of a single tenant.

Native filter execution: The isolated filter execution environment trades-off higher security for lower com-
munication capabilities and interception flexibility. For this reason, we also contribute an alternative way to
intercept and execute code natively. As with Storlets, a developer can install on runtime in Crystal code mod-
ules as filters following simple design guidelines. However, native filters can i) execute code at all the possible
points of a request’s life-cycle, and ii) communicate with external components (e.g, metadata layer), as well as
to access storage devices (e.g., SSD). As Crystal is devised to execute trusted code from administrators, this
environment represents a more flexible alternative.

9.5 Hands On: Extending Crystal

Next, we show the benefits of Crystal’s design by extending the system with data management filters and
distributed control of IO bandwidth for OpenStack Swift.

9.5.1 New Storage Management Policies

Goal: To define policies that enforce filters, like compression, encryption or caching, even dynamically:
P1: FOR TENANT T1 WHEN OBJECT_TYPE=DOCS DO SET COMPRESSION ON PROXY, SET ENCRYPTION

P2: FOR CONTAINER C1 WHEN GETS_SEC > 5 SET CACHING

Data plane (Filters): To enable such policies, we first need to develop the filters at the data plane. In Crystal
this can be done either using the native or isolated execution environments.

The next code snippet shows how to develop a filter for our isolated execution environment. A system
developer only needs to create a class that implements an interface (IStorlet), providing the actual data
transformations on the object request streams (iStream, oStream) inside the invoke method. To wit,
we implemented the compression (gzip engine) and encryption (AES-256) filters using storlets, whereas the
caching filter exploits SSD drives at proxies via our native execution environment. Then, once these filters were
developed, we installed them via the Crystal filter framework API.

public class StorletName implements IStorlet {

@Override
public void invoke(ArrayList<StorletInputStream> iStream,
ArrayList<StorletOutputStream> oStream,
Map<String, String> parameters, StorletLogger logger)
throws StorletException {

//Develop filter logic here
}

}

Data plane (Monitoring): Achieving dynamic policy enforcement requires from monitoring information.
Thus, we instructed our metrics middleware to inject monitoring information of object requests (e.g., PUTs/GETs
per second of a tenant) in the monitoring service. Via the Crystal API (see Table 9.3a), we also deployed several
workload metrics processes (one per metric and target granularity) that aggregate such monitoring information
to be published to controllers. Also, our filter framework middleware is already capable of triggering filters
based on object metadata, such as object size (OBJECT_SIZE) and type (OBJECT_TYPE).

Control Plane: Finally, we registered intuitive keywords for both filters and workload metrics at the meta-
data layer (e.g., CACHING, GET_SEC_TENANT) using the Crystal registry API. To achieve P1, we also regis-
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Algorithm 1 computeAssignments pseudo-code embedded into a bandwidth differentiation controller
1: function COMPUTEASSIGNMENTS(info):
2: . Retrieve the defined tenant SLOs from the metadata layer
3: SLOs← getMetadataStoreSLOs();
4: disksUsage← {};
5: . Compute disk assignments on current tenant transfers to meet SLOs
6: SLOTenantAssignments← minSLO(disksUsage, SLOs);
7: . Estimate spare bw at proxy/storage nodes based on current usage
8: spareBW← min(maxBWproxys(info), maxBWdisks(disksUsage));
9: spareBWEnforcements← {};

10: . Distribute spare bandwidth fairly across all tenants
11: for tenant in info do
12: spareBWEnforcements[tenant]← spareBW

numTenants(in f o) ;
13: end for
14: . Calculate disk assignments to achieve spare bw shares for tenants
15: spareBWAssignments← minSLO(disksUsage, spareBWEnforcements);
16: . Sum up SLO and spare bw tenant disk assignments
17: return SLOTenantAssignments ∪ spareBWAssignments;
18: end function

tered the keyword DOCS, which contains the file extensions of common documents (e.g, .pdf, .doc). At this
point, we can use such keywords in our DSL to design new storage policies.

9.5.2 Distributed IO Bandwidth Control

Goal: To provide Crystal with means of defining policies that enforce a global IO bandwidth SLO:
P3: FOR TENANT T1 SET BANDWIDTH WITH PARAM1=30MBps

Data plane (Filter). To achieve global bandwidth SLOs on targets, we first need to locally control the
bandwidth of object requests. Intuitively, bandwidth control in Swift may be performed at the proxy or storage
node stages. At the proxy level this task may be simpler, as fewer nodes should be coordinated. However,
this approach is agnostic of the background tasks (e.g., replication) executed by storage nodes, which impact
on performance [20]. We implemented a native bandwidth control filter that enables the enforcement at both
stages.

Our filter dynamically creates threads that serve and control the bandwidth allocation for individual tenants,
either at proxies or storage nodes. Our filter garbage-collects control threads that are inactive for a certain
timeout. Moreover, it has a consumer process that receives bandwidth assignments from a controller to be
enforced on a tenant’s object streams. Once the consumer receives a new event, it propagates the assignments
to the filter that immediately take effect on current transfers.

Data plane (Monitoring): For building the control loop, our bandwidth control service integrates individual
monitoring metrics per type of traffic (i.e., GET, PUT, REPLICATION); this makes it possible to define policies
to each type of traffic, if needed. In essence, monitoring events contain a data structure that represents the
bandwidth share that tenants exhibited at proxies or per storage node disk. We also deployed workload metric
processes to expose these events to controllers.

Control plane. We equipped Crystal with a base bandwidth controller that encapsulates the logic to ingest
bandwidth monitoring events and to disseminate the computed assignments across nodes for the different re-
quest types. The base controller also gets the SLOs to be enforced from the metadata layer (see Table 9.3a).
Hence, to develop a bandwidth enforcement algorithm, practitioners only need to write a new controller that
extends the base one and overrides the function compute_assignments (see Algorithm 1).

To show the feasibility of our bandwidth differentiation filter, we design an enforcement controller in Algo-
rithm 1. Concretely, we aim at satisfying three main requirements: i) achieve a minimum bandwidth per tenant,
ii) work-conservation (do not leave idle resources), and iii) provide global fairness of spare bandwidth across
tenants. The challenge is to meet these requirements considering that we do not control neither the data access
of tenants nor the data layout of Swift [30, 31].

To this end, Algorithm 1 works in three stages. First, the algorithm tries to ensure the SLO for tenants
specified in the metadata layer by resorting to function minSLO (requirement 1, line 6). Essentially, minSLO
first assigns a proportional bandwidth share to transfer of tenants with guaranteed bandwidth. Note that such
assignment is done in descending order based on the number of parallel transfers, provided that tenants with
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fewer transfers have less opportunities of meeting their SLOs. Moreover, minSLO checks whether there exist
overloaded storage nodes in the system. In the affirmative case, the algorithm tries to reallocate bandwidth of
tenants with multiple transfers from overloaded nodes to idle ones. In case that no reallocation is possible, the
algorithm reduces the bandwidth share of tenants with SLOs on overloaded nodes.

In second place, once Algorithm 1 has calculated the assignments for tenants with SLOs, it estimates the
spare bandwidth available to achieve full utilization of the cluster (requirement 2, line 8). Note that the notion
of spare bandwidth depends on the cluster at hand, as the bottleneck may be either at the proxies or storage
nodes.

Algorithm 1 builds a new assignment data structure in which the spare bandwidth is equally assigned to all
tenants. The algorithm proceeds by calling again function minSLO to calculate the spare bandwidth assign-
ments (requirement 3, line 15). Note that the second call to minSLO receives the disksUsage data structure
that keeps the already reserved node bandwidth according to the SLO tenant assignments. The algorithm out-
puts the combination of SLO and spare bandwidth assignments per tenant. While more complex algorithms
can be integrated in Crystal, our goal in Algorithm 1 is to offer an attractive simplicity/effectiveness trade-off,
validating our bandwidth differentiation framework.

9.6 Crystal Prototype

Web page http://crystal-sds.org/
Source Code https://github.com/Crystal-SDS
Documentation https://github.com/Crystal-SDS/controller
Continuous Integration https://travis-ci.org/Crystal-SDS/controller
Test Coverage https://coveralls.io/github/Crystal-SDS/controller
Code Quality https://landscape.io/github/Crystal-SDS/controller

We tested the Crystal prototype in OpenStack Kilo version. The APIs at the control plane are implemented
with Django framework to ease the integration with other architecture components. As metadata layer, in this
work Crystal uses Redis 3.0. We resort to PyActive [32] for building supervised controllers and workload
metric processes that can communicate either via TCP or a Message Oriented Middleware (MOM). We use
RabbitMQ 3.6 as a communication service for monitoring information. Crystal also provides a dashboard that
extends the OpenStack Horizon to ease the management of the SDS framework by administrators. The code of
Crystal for object storage is publicly available7 and our contributions to the Storlets framework are in process
of acceptance by the official OpenStack repository.

9.7 Related Systems

SDS Systems. IOFlow [33], now extended as sRoute [34], was the first complete SDS architecture. IOFlow
enables end-to-end (e2e) policies to specify the treatment of IO flows from VMs to shared storage. This was
achieved by introducing a queuing abstraction at the data plane and translating high-level policies into queuing
rules. The original focus of IOFlow was to enforce e2e bandwidth targets, which was later augmented with
caching and tail latency control in [34, 35].

Despite Crystal shares with IOFlow design concepts (e.g., policies, control/data planes), our target is differ-
ent; Crystal pursues to configure and optimize object stores to the evolving needs of applications, for it needs a
richer data plane and a different suite of management abstractions and enforcement mechanisms. For instance,
tenants require mechanisms to inject custom logic and abstractions to specify not only system activities but also
application-specific transformations on objects.

Retro [20] is a framework for implementing resource management policies in multi-tenant distributed sys-
tems. It can be viewed as an incarnation of SDS, because as IOFlow and Crystal, it separates the controller
from the mechanisms that implement it. A major contribution of Retro is the development of abstractions to
enable policies that are system- and resource-agnostic. Crystal shares the same spirit of requiring low develop
effort. However, its abstractions are different. Crystal must abstract not only resource management; it must
enable the concise definition of policies that enable high levels of programmability to suit application needs.
Retro is only extensible to handle custom resources.

7https://github.com/Crystal-SDS
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Vertigo [36] is a framework where the control logic is directly embedded into data objects in the form
of micro-controllers. This enables object-level policies avoiding a centralized control point. We believe that
Crystal may also support policies that orchestrate micro-controllers.

IO bandwidth differentiation. Enforcing bandwidth SLOs in shared storage has been a subject of intensive
research over the past 10 years, specially in block storage [37, 38, 39, 40, 41, 33, 20]. However, object stores
have received much less attention in this regard; vanilla Swift only provides a non-automated mechanisms for
limiting the “number of requests” [42] per tenant, instead of IO bandwidth. In fact, this problem resembles
the one stated by Wang et al. [31] where multiple clients access a distributed storage system with different
data layout and access patterns, yet the performance guarantees required are global. To our knowledge, Wu et
al. [40] is the only work addressing this issue in object storage. It provides SLOs in Ceph by orchestrating local
rate limiters offered by a modified version of the underlying file system (EBOFS). However, this approach is
intrusive and restricted to work with EBOFS. In contrast, Crystal transparently intercepts and limits requests
streams, enabling developers to design new algorithms that provide distributed bandwidth enforcement [43, 30].

Active storage. The early concept of active disk [25], i.e., a HDD with computational capacity, was bor-
rowed by distributed file system designers in HPC environments in the last decade to give birth to active storage.
The goal was to diminish the amount of data movement between storage and compute nodes [44, 45]. Piernas
et al. [26] presented an active storage implementation integrated in the Lustre file system that provides flexible
execution of code near to data in the user space. Crystal goes beyond active storage. It exposes through the filter
abstraction a mechanism to inject custom logic into the data plane and expose it to management policies. This
requires filters to be deployable at runtime, support sandbox execution [28], and be part of complex workflows.

10 Evaluation of Crystal
Next, we evaluate a prototype of Crystal for OpenStack Swift in terms of flexibility, performance and overhead.

Objectives: Our evaluation aims to show: i) Crystal can define policies at multiple granularities, achiev-
ing administration flexibility; ii) The enforcement of storage automation filters can be dynamically triggered
based on workload conditions; iii) Crystal achieves accurate distributed enforcement of IO bandwidth SLOs on
different tenants; iv) Finally, Crystal has low execution/monitoring overhead.

Workloads: We resort to well-known benchmarks and replays of real workload traces. First, we use
ssbench [46] to execute stress-like workloads on Swift. ssbench provides flexibility regarding the type
(CRUD) and number of operations to be executed, as well as the size of files generated. All these parameters
can be specified in form of configuration “scenarios”.

Moreover, to evaluate Crystal under real-world object storage workloads, we collected and replayed the
following traces8: i) The first trace (65GB) captures a read-dominated Web workload consisting of requests re-
lated to 228K data objects from several Web pages hosted at Arctur datacenter for 1 month. ii) The second trace
(779GB) was collected from a document database (write-dominated) storing 817K car testing/standardization
documents (e.g., pictures, PDFs, docs) for 9 months at Idiada; a large company in the automotive sector. We
resort to SDGen [47] to generate realistic contents for data objects based on the file types described in workload
traces.

Platform: We ran our experiments in our own 13-machine cluster located at URV facilities. The cluster
is formed by 9 Dell PowerEdge 320 nodes (Intel Xeon E5-2403 processors); 2 of them act as Swift proxy
nodes (28GB RAM, 1TB HDD, 500GB SSD) and the rest are Swift storage nodes (16GB RAM, 2x1TB HDD).
There are 3 Dell PowerEdge 420 (32GB RAM, 1TB HDD) nodes that are used as compute nodes to execute
workloads. Also, there is 1 large node that runs the OpenStack services and the Crystal control plane (i.e.,
APIs, controllers, MOM, Redis). Nodes in the cluster are connected via GbE switched links.

10.1 Evaluating Storage Automation

Next, we present a battery of experiments that demonstrate the feasibility and capabilities of storage automation
with Crystal. To this end, we make use of synthetic workloads and real trace replays (Ididada, Arctur). These
experiments have been executed at the compute nodes against 1 swift proxy and 6 storage nodes.

Storage management capabilities of Crystal. Fig. 10 shows the execution of several storage automation
policies on a workload related to containers C1 and C2 belonging to tenant T1. Specifically, we executed a

8Traces are available at http://iostack.eu/datasets-menu
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Figure 10: Enforcement of compression/encryption filters.

write-only synthetic workload (4PUT/second of 1MB objects) in which data objects stored at C1 consist of
random data, whereas C2 stores highly redundant objects.

Due to the security requirements of T1, the first policy defined by the administrator is to encrypt his data
objects (P1). Fig. 10 shows that the PUT operations of both containers exhibit a slight extra overhead due to
encryption, given that the policy has been defined at the tenant scope. There are two important aspects to note
from P1: First, the execution of encryption on T1’s requests is isolated from filter executions of other tenants,
providing higher security guarantees [28] (Storlet filter). Second, the administrator had the ability to enforce
the filter at the storage node in order to do not overload the proxy with the overhead of encrypting data objects
(ON keyword).

After policy P1 was enforced, the administrator decided to optimize the storage space of T1’s objects by
enforcing compression (P2). P2 also enforces compression at the proxy node to minimize communication
between the proxy and storage node (ON PROXY). Note that the enforcement of P1 and P2 demonstrates the
filter pipelining capabilities of our filter framework; once P2 is defined, Crystal enforces compression at the
proxy node and encryption at storage nodes for each object request. Also, as shown in Section 9.4, the filter
framework tags objects with extended metadata to trigger the reverse execution of these filters on GET requests
(i.e., decryption and decompression, in that order).

However, the administrator realized that the compression filter on C1’s requests exhibited higher latency
and provided no storage space savings (incompressible data). Thus, the administrator defined policy P3 that
essentially enforces only encryption on C1’s requests. After the defining P3, the performance of C1’s requests
exhibits the same behavior as before the enforcement of P2. Thus, the administrator is able to manage storage
at different granularities, such as tenant or container. Furthermore, the last policy also proves the usefulness
of our policy specialization mechanism; policy P2 at the tenant scope applies to C1, whereas the system only
executes P3 on C1’s requests, as it is the most specialized policy.

Dynamic storage automation. Fig. 11 shows the enforcement of dynamic caching policy (P1). The filter
exploits SSD drives at the proxy to provide fast object retrievals under high activity. We executed a synthetic
oscillatory workload to verify the correctness of the dynamic enforcement of filters via controllers.

In Fig. 11, we show the average latency of PUT/GET requests and the intensity of the workload. As can be
observed, the caching filter takes place when the workload exceeds 5 GETs per second. At this point, the filter
starts caching objects at the proxy SSD on PUTs, as well as to lookup the SSD to retrieve potentially cached
objects on GETs. First, the filter provides performance benefits for object retrievals; when the caching filter
is activated, object retrievals are in median 29.7% faster compared to no-caching periods. Second, we noted
that the costs of executing asynchronous writes on the SSD upon PUT requests may be amortized by offloading
storage nodes; that is, the average PUT latency is in median 2% lower when caching is activated. This may be
due to the fact that storage nodes are mostly free to execute writes, as a large fraction of GETs are being served
at the proxy’s cache.

In conclusion, Crystal’s control loop enables dynamic enforcement of storage filters under variable work-
loads. Moreover, the native filters in Crystal enable complex workload optimizations.

Managing real workloads. Next, we show how Crystal policies can handle real workloads (12 hours).
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Figure 12: Policy enforcement on Idiada workload replay.

That is, we compress and encrypt documents (P1 in Fig. 7) on a replay of the Idiada trace (write-dominated),
whereas we enforce caching of small files (P2 in Fig. 7) on a replay of Arctur workload (read-dominated).

Fig. 12 shows the request bandwidth exhibited during the execution of the Idiada trace. Concretely, we
executed two concurrent workloads, each associated to a different tenant. We enforced compression and en-
cryption only on tenant T2. Observably, tenant T2’s transfers are over 13% and 7% slower compared to T1 for
GETs and PUTs, respectively. This is due to the computation overhead of enforcing filters on T2’s document
objects. As a result, T2’s documents consumed 65% less space compared to T1 with compression and they
benefit from higher data confidentially thanks to encryption.

Fig. 13 shows tenants T2 and T1, both concurrently running a trace replay of Arctur. By executing a
dynamic caching policy, T2’s GET requests are in median 99% faster compared to T1. That is, as the workload
of Arctur is intense and almost read-only, caching was enabled for tenant T2 for most of the experiment.
This, in addition to the small size of files that fit in cache, makes caching at the proxy SSD drives a practical
optimization filter. The median write overhead of T2 compared to T1 is 4.2%, which indicates that our filter
efficiently intercepts the data stream for doing writes at the SSD.

The enforcement of these policies demonstrates the benefits of managing an object store with Crystal.

10.2 Achieving Bandwidth Differentiation

Next, we evaluate the effectiveness of our bandwidth differentiation filter. To this end, we executed a ssbench
workload (10 concurrent threads) in each of the 3 compute nodes in our cluster, one of each representing an
individual tenant. As we study the effects of replication separately (Fig. 17), the rest of experiments were
performed using one replica rings.

Request types. Fig. 14 plots two different SLO enforcement experiments on three different tenants for
PUT and GET requests, respectively (enforcement at proxy node). Appreciably, the execution of Algorithm 1
exhibits a near exact behavior for both PUT and GET requests. Moreover, we observe that tenants obtain their
SLO plus an equal share of spare bandwidth, according to the expected policy behavior defined by colored
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Figure 14: 1 proxy/3 storage nodes, bandwidth control at proxy.

areas. This demonstrates the effectiveness of our bandwidth control middleware for intercepting and limiting
both requests types. Interestingly, we also observe in Fig. 14 that PUT bandwidth exhibits higher variability
than GET bandwidth. A reason for this behavior may be that Swift buffers write requests. Concretely, after
writing 512MB of data, we observed that the transfers of tenants stopped for a short interval in which the
system might check if the data has been correctly stored. The side effect of this mechanism is that the stream
of incoming requests is interrupted, inducing higher variability.

Impact of enforcement stage. An interesting aspect to study in our framework are the implications of
enforcing bandwidth control at either the proxies or storage nodes. In this sense, Fig. 15 shows the enforcement
SLOs on GET requests at both stages. At first glance, we observe in Fig. 15 that our framework makes it
possible to enforce bandwidth limits at both stages. However, Fig. 15 also illustrates that the enforcement
on storage nodes presents higher variability compared to proxy enforcement. This behavior arises from the
relationship between the number of nodes to coordinate and the intensity of workload at hand. That is, given
the same workload intensity, fewer nodes (e.g., proxies) offers higher bandwidth stability, as a tenant’s requests
are virtually a continuous data stream, being easier to control. Conversely, each storage node receives a smaller
fraction of a tenant’s requests, as normally storage nodes are more numerous than proxies. This yields that
storage nodes should deal with shorter and discontinuous streams that are harder to control.

But enforcing bandwidth SLOs at storage nodes enables to control background tasks, like replication. Thus,
we face trade-off between accuracy and control that may be solved with hybrid enforcement schemes.

Mixed tenant activity, variate file sizes. Next, we execute a mixed read/write workload using files of
different sizes; small (8MB to 16MB), medium (32MB to 64MB) and large (128MB to 256MB) files. Besides,
to explore the scalability, in this set of experiments we resort to a cluster configuration that doubles the size of
the previous one (2 proxies and 6 storage nodes).

Appreciably, Fig. 16 shows that our enforcement controller achieves bandwidth SLOs under mixed work-
loads. Moreover, we observe that the bandwidth differentiation framework scales to larger cluster sizes, as the
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policy provides tenants with the desired SLO plus a fair share of spare bandwidth, specially for T1 and T2.
However, Fig. 16 also illustrates that the PUT bandwidth provided to T1 is significantly more variable than
for other tenants; this is due to various reasons. First, we already mentioned the increased variability of PUT
requests, apparently due to write buffering. Second, the bandwidth filter seems to be less precise when limiting
streams that require an SLO close to the node/link capacity. Moreover, small files make the workload harder
to handle by the controller as more node assignments updates are potentially needed, specially as the cluster
grows. In the future, we plan to continue the exploration and mitigation of these sources of variability.

Controlling background tasks. An advantage of enforcing bandwidth SLOs at storage nodes is that we
can also control the bandwidth of background processes via policies. To wit, Fig. 17 illustrates the impact of
replication tasks on multi-tenant workloads. In Fig. 17, we observe that during the first 60 seconds of exper-
iment (i.e., no SLOs defined) tenants are far from having a sustained GET bandwidth of ≈ 33MBps, meaning
that they are importantly affected by the replication process. The reason is that, internally, storage nodes trigger
hundreds of point-to-point transfers to write copies of already stored objects to other nodes belonging to the
ring. Note that the aggregated replication bandwidth within the cluster reached 221MBps. Furthermore, even
though we enforce SLOs from second 60 onwards, the objectives are not achieved —specially for tenants T2
and T3— until replication bandwidth is under control. As soon as we deploy a controller that enforces a hard
limit of 5MBps to the aggregated replication bandwidth, the SLOs of tenants are rapidly achieved. We conclude
that Crystal has potential as a framework to define fine-grained policies for managing bandwidth allocation in
object stores.

10.3 Crystal Overhead

Filter framework latency overheads. A relevant question to answer is the performance costs that our filter
framework introduces to the regular operation of the system. Essentially, the filter framework may introduce
overhead at i) contacting the metadata layer, ii) intercepting the data stream through a filter9 and iii) managing
extended object metadata. We show this in Fig. 18.

9We focus on isolated filter execution, as native execution has no additional interception overhead.
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Figure 18: Performance overhead of filter framework metadata interactions and isolated filter enforcement.

Fig. 18 shows that the median latency of accessing the metadata store normally falls between 1.5ms and
3ms (MA boxplots) compared to vanilla Swift (SW). For 1MB objects, this represents a relative median latency
overhead of 3.9% for both GETs and PUTs. Naturally, this overhead becomes slightly higher as the object
size decreases, but is still practical (8% to 13% for 10KB objects). This confirms that our filter framework
minimizes communication with the metadata layer (i.e., 1 query per request). Moreover, Fig. 18 shows that an
in-memory store like Redis fits the metadata workload of Crystal, specially if it is co-located with proxy nodes.

Next, we focus on the isolated interception of object requests via Storlets, which trades-off performance for
higher security guarantees (see Section 9.4). Fig. 18 illustrates that the median isolated interception overhead
of a void filter (NOOP) oscillates between 3ms and 11ms. This cost comes from injecting the data stream into
a Docker to achieve isolation. In addition, we have to consider the performance of the filter itself, which
greatly depends on its implementation, or even on the data at hand. For instance, columns CZ and CR depict
the performance of the compression filter for highly redundant (zeros) and random data objects. Visibly, the
performance of PUT requests changes significantly (e.g., objects ≥ 1MB) as compression algorithms exhibit
different performance depending on the data contents [47]. Conversely, GET requests are not significantly
affected by decompressing different data contents. Hence, to improve performance, filters should be not only
well implemented, but also enforced in the right conditions.

Finally, our filter framework enables managing extended metadata of objects to store a sequence of data
transformations to be undone on retrievals (see Section 9.4). We measured that reading/writing extended object
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Figure 19: Pipelining performance for isolated filters.
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Figure 20: Traffic overhead of Crystal depending on the number of nodes, controllers and workload metrics.

metadata takes 0.3ms/2ms, respectively, which constitutes modest overhead.
Filter pipelining throughput. Next, we want to further explore the overhead of isolated filter execution.

Specifically, Fig. 19 depicts the latency overhead of several NOOP Storlet filters to evaluate the costs of pipelin-
ing; a new feature we developed in this work.

Fig. 19 shows that the latency costs of intercepting a data stream through a pipeline of isolated filters is
acceptable. To inform this argument, each additional filter in the pipeline incurs 3ms to 9ms of extra latency
in median. This is slightly a lower latency than passing the stream through the Docker container for the
first time. The reason is that pipelining tenant filters is done within the same Docker container, so the costs
of injecting the stream into the container are present only once. Therefore, our filter framework is a feasible
platform to dynamically compose and pipeline several isolated filters.

Monitoring overheads. We want to give a sense on the monitoring overhead of Crystal. To this end, we
provide a measurement based estimation of various configurations of monitoring nodes, workload metrics and
controllers in Crystal. To wit, the monitoring traffic overhead O related toW workload metrics is produced by
a set of N nodes, either proxies or storage nodes. The set of N nodes periodically sends monitoring events
of size s to the MOM broker, which are consumed by the W workload metrics. Then, a workload metric
aggregates the messages of all producer nodes into a single monitoring message. The aggregated message is
then published to a set of subscribed controllers C. Therefore, we can do a worst case estimation of the total
generated traffic per monitoring epoch (e.g., 1 second) as: O = |W| · [s · (2 · |N |+ |C|)]. We also measured
simple events (e.g., PUT_SEC) to be s = 130 bytes in size.

Given that, Fig. 20 shows that the estimated monitoring overhead of a single metric is modest; in the worst
case, a single workload metric generates less than 40KBps in a 100-machine cluster with |C| = 100 subscribed
controllers. Clearly, the dominant factor of traffic generation is the number of workload metrics working in the
system. However, even for a large number of workload metrics (|W| = 20), the monitoring requirements in
a 50-machine cluster do not exceed 520KBps. These overheads seem lower than existing SDS systems with
advanced monitoring [20].
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11 Future Development of the IOStack Toolkit
In this section, we outline some of the main development objectives that will be targeted for the last year of
the project. These objectives mainly focus on better exploiting dynamic service provisioning and explore the
convergence/cooperation of the different building blocks.

Dynamic block filters: In deliverable D3.2, we presented a complete evaluation of the filter framework for
block storage provided by Konnector, as well as several filters that can benefit our use case companies. For
instance, Idiada can now benefit from important storage savings in block volumes that store the results of car
crash simulations thanks to novel data reduction filters.

In the third year, our objective is to continue this path to create block filters that may exploit runtime
monitoring information of the system dynamically. This may solve performance control and resource manage-
ment problems in shared storage clusters, such as providing a certain minimum bandwidth per block volume.
Concretely, we aim at integrating a bandwidth differentiation filter in Konnector that can provide QoS differen-
tiation on a tenant’s VMs. To this end, we will need to deploy algorithms as distributed controllers at the control
plane that control the bandwidth of running VMs based on monitoring information; similarly to our bandwidth
control service in object storage, at the data plane we need a client-side Konnector filter that can control the
bandwidth of a given volume/VM based on the instructions from the control plane. This will enable companies
like MPStor or Arctur to enforce bandwidth control on multiple data processing applications via simple SDS
policies.

Unifying object filters and micro-controllers: In this deliverable, we presented Crystal as the main build-
ing block to deploy SDS services on top of OpenStack Swift. We demonstrated that Crystal enables powerful
and flexible ways of deploying storage filters to solve a wide variety of problems from our use-cases (Idiada,
Arctur), including data management or performance control services.

But as one can infer, this is not the only way of doing so. Very recently, we designed an alternative
for orchestrating SDS services in Swift, called the micro-controllers approach [36]. Micro-controllers are
like regular objects, but they can contain state, triggers and code: i) The state of a micro-controller can be,
for instance, the number of PUT requests that an object or group of objects received since their creation; ii)
Triggers in a micro-controller are invoked when an object receives a particular operation, or even after some
time (e.g., auto-call trigger every 24 hours); iii) A micro-controller can also contain code to be executed on
one or many objects after some conditions or triggers are met, such as compression or migration to another
Swift ring. The main advantage of micro-controllers is the ability of managing the life-cycle of objects in a
decentralized manner, so one can avoid the monitoring and computation overhead of Crystal’s dynamic filters.
We believe that micro-controllers are specially suitable for building storage tiering and cold/hot data filters,
which can be efficiently implemented in a decentralized manner for the Idiada use case. Our objective is to
integrate micro-controllers filter into the existing Crystal building block.

Generic pushdown for broader types of analytics: In deliverable D4.2, we presented the design and
extensive evaluation of the pushdown mechanism: A way of delegating part of the analytics computations from
the compute cluster to the storage cluster. We demonstrated that we could greatly speedup Spark SQL queries
from GridPocket up to x30, which is very important for data analysts in that company.

However, we believe that this research can be widened along two axes:

• Pushdown of SQL filter from Spark SQL to a storlet is not always doable, for instance when the data set
comprises lot of small to medium objects. In this case we will work at developing techniques that permit
to address only the subset of the objects that are relevant to the SQL query, thus just skipping the data
ingestion of the non relevant objects.

• SQL pushdown is only a specific case of a potentially generic form of intelligently parallelizing compu-
tations among storage and compute clusters. In the third year of the project, we will work on making the
pushdown mechanism generic enough to speedup different types of popular analytics algorithms, putting
special emphasis on facilitating its use from a data analyst perspective.

Hyper-converged analytics: Deliverable D5.2 presented Zoe; the IOStack building block for providing
analytics-as-a-service in a cloud. Zoe provides three main advantages: i) It facilitates the deployment of new
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applications in a cluster via simple policies or descriptors; ii) Zoe exhibits higher performance than traditional
VM virtualization thanks to the orchestration of Docker containers; iii) Zoe is a substrate to develop application
scheduling policies in a shared compute cluster. This makes it possible for Arctur —and other companies that
use Zoe, such as AirFrance or KPMG— to rapidly deploy, customize and orchestrate analytics applications in
shared clusters.

Unfortunately, Zoe currently does not care about the storage system that its applications are making use of.
This may lead, for example, that scheduling policies fail to meet a deadline due to the lack of control of storage
resources. In addition to this, one can easily infer that different analytics applications may exhibit very different
storage usage patterns, which makes the problem even harder. In other words, in IOStack compute and storage
subsystems are now totally isolated and uncoordinated, which may prevent us from exploiting a wide variety
of “hyper-convergent” or “cross-layer” optimizations across compute and storage building blocks. In the last
year of the project we will investigate the feasibility of introducing coordination strategies between compute
and storage for improving the performance and efficiency of virtualized analytics.

12 Conclusions
In this deliverable, we presented the release of the IOStack toolkit for month 24. At this point of the project’s
development, we have an integrated SDS solution for Big Data analytics with several deployments running.
The toolkit consists of three main building blocks for analytics virtualization (Zoe), block storage (Konnector)
and object storage (Crystal), as well as an administration/monitoring dashboard and other components that
complete the toolkit (Storlets, Stocator). We also presented that the different software components of IOStack
are adhered to design principles described in D2.2 and integrated into a single toolkit. Moreover, this does not
prevent that each software component of the IOStack toolkit can be exploited in a standalone manner.

In the second part of the deliverable we described in depth the architecture of Crystal: The IOStack building
block that provides SDS for object storage. Specifically, Crystal pursues an efficient use of multi-tenant object
stores that need to support non-anticipated requirements. Crystal addresses unique challenges for providing
the necessary abstractions to add new functionalities at the data plane that can be immediately managed at the
control plane. For instance, it adds a filtering abstraction to separate control policies from the execution of
computations and resource management mechanisms at the data plane. Also, extending Crystal requires low
development effort. We demonstrate the feasibility of Crystal on top of OpenStack Swift through two use cases
that target automation and bandwidth differentiation making use of benchmarks and real workloads from our
use case companies (Arctur, Idiada). Our results show that Crystal is practical enough to be run in a shared
cloud object store.
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13 Appendix 1: Analysis of the kernel oriented Bandwidth Differentiation Filter
13.1 Objectives of the Study

Bandwidth differentiation can be explained as the creation of a controlled unfair sharing of the resource. In
our case we define bandwidth differentiation as the ability of the object store to apply unfair but controlled
bandwidth per object.

In the following sections, we will analyse the behaviour of the IO Priorities method [48] that uses Linux ker-
nel IO priorities. This method does not need any configuration setting to adapt to a new hardware. However,it
needs to deploy a modified Swift to track transfer streams and due to how Linux I/O stack works on writes,
does not allow to control PUT requests with priorities without changing the Linux kernel implementation of
the I/O stack.

In section 13.2 the method is described and also an example of control plane that ensures distributed BW
enforcement among all object servers. In section 13.3 we propose different experiments in order to evaluate the
behavior of the priorities method on overloaded and normal situations. Finally, in section 13.5 a few conclusions
are given.

13.2 Bandwidth control at the operating system level

Thanks to a new threading model developed by BSC [48], and presented on the WP2 previous deliverable
(D2.2), we can individually track each stream of data at the object server. That was not possible on the original
model due to the use of a thread pool and it is an essential service for Software Defined Storage. Thanks to this
new feature, now we can apply different policies to each stream of data, for example, we can apply directly I/O
priorities [49] to create bandwidth differentiation policies, controlling the bandwidth or throughput offered to
one object (or group, tenant, etc.) by each object server. Having a request level control allows the operating
system to automatically share spare disk bandwidth. This type of control is not possible at higher layers, for
example at the middleware layer as a plug-in, due to we cannot prioritize our requests over other I/O threads
(interferences).

The Operating System offers several mechanisms to classify the I/O requests, one of such mechanisms
is I/O Priority. On the last Linux kernels we have 3 classes: Idle, Best Effort, and Real Time. Best Effort,
has 8 priority levels (0 maximum, 7 minimum). I/O Priority is rarely used, but using this mechanism we can
differentiate important requests from non-important requests (requests that can be delayed as the stream is well
served in the bandwidth metric).

Using such priority component simplifies the implementation as we can avoid using delays in the code.
However, as requests can not be cancelled or moved to another object server and the HDD performance is non-
linear, it is a best effort: If the requested bandwidth is not obtained, the client will need to cancel the ongoing
transfer, and repeat it. The proxy server will intercept it, and sent it to another object storage (selected from
some defined policies) that has enough capacity. Other policies can be implemented using more levels and
controlling them inside the proxy or external controller. However, the actions that the controller can take are
limited to modify the bandwidth allocated up or down to specialize storage servers and to reduce seek time, as
we can not move requests from one server to another. So one more time we could only achieve a best effort
bandwidth differentiation. Trying to guarantee the SLO, with such restrictions, per object is not an easy task
inside the control plane as it depends on how requests and objects are distributed (we will show that behaviour
on the three 50/20 experiments). However, all but one of the results presented show that at least the median
value of the bandwidth obtained per experiment fulfills the requested bandwidth with a control window of the
inner filter of 1500 chunks even in the overloaded scenarios.

Internally, our implementation increases the priority of a request if the sum of BW of all objects of a tenant
is below the needed BW of that tenant, and marks as a low priority request if the BW exceeds the needed BW
value. We are using only Best Effort 0 and IDLE priorities, so the spare bandwidth is distributed to the other
I/O processes. Using a higher priority (higher than IDLE, Best Effort 4 for example) will share the non-needed
bandwidth among all the I/O processes and the objects. On any scenario, requests needed to maintain the
bandwidth should have a higher priority than Best Effort 4 (the default one). There is one parameter that we
can tune to have more stable timelines, the window frame duration that the filter uses to compute the obtained
bandwidth in order to decide to increase or decrease the priority. On these experiments, we used a small window
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Parameter Value
Medium File size 160000000 (bytes)

Number of medium files 100
Tiny file size 16000000 (bytes)

Number of tiny files 100
User count 5

Container count 10
Workers 10

Table 13.3a: SSBench parameters used for experiments.

(1500 chunks, near 1 second at 100MB/s) but we recommend to increase it as reactivity of the control plane is
not compromised and the results are more stable.

Control plane: Bandwidth enforcement algorithm: IOStack [50] has a SDS controller[51] with agents
that provide a control plane to adjust the bandwidth and do actions like distribute and specialize object servers
to reduce seek time trying to increase the performance. This control plane receives the bandwidth usage per
tenant and makes decisions based in different possible rules in order to set the bandwidth limit per object-server
and obtain a desired global bandwidth.

13.3 Evaluation

To test bandwidth differentiation we use ssbench [46] as a benchmark. This benchmark imitates several dis-
tributed clients requesting objects from Swift. We can set different parameters as, for example, the number of
objects, size of them, number of simultaneous requests, type of these requests and the number of clients, among
others. In the experiments described in section 13.3.1 two tenants are executing two different ssbench loads,
but with the same scenario parameters shown in table 13.3a. All the tests presented in the section 13.3.1 are
executed in the IOStack testbed [52] provided by ARCTUR. Swift installation consists of three single HDD
storage nodes plus one proxy node connected with 10 Gigabit Ethernet (so maximum sustained transfer speed
to the proxy is near 120 MB/s). ssbench loads and SDS-Controller are executed on three different machines.

Bandwidth data is directly retrieved from the SDS-Controller bandwidth metric that is plotting the band-
width usage to the IOStack dashboard. This bandwidth is obtained from a middleware in each Object Server
that calculates the bandwidth usage per tenant.

We also present results in the section 13.4 which show how the bandwidth differentiation can offer more
performance than the original behaviour. Those test had been executed within a single object server and with
big objects only.

13.3.1 Experimental Results

In this section we are going to evaluate the method proposed in different ways: having high bandwidth request
(overload), middle bandwidth request (disk overload) and also considering possible interferences in the object
servers (such as replication or other processes). We are interested on evaluating hard scenarios as they show
how the component and Swift works clearly more than low demanding or stable workloads where the behaviour
is predictable. All timeline plots have been smoothed (loess smoothing with 5% of the points) to have a
better visualization of the results. Empirical Cumulative Distribution Frequency (ECDF) is calculated using the
original data (not smoothed) in order to have real statistics about the bandwidth values. As a general rule, we
want that, for a requested BW value, the ECDF curve shows a value under 0.5. That means that more than 50%
of the points are above the requested BW value, so the mean of the whole execution is also above the requested
BW value.

All logs and code for this evaluation can be found on the following github [53].

High Bandwidth requested (Overloaded) On this subsection we explore the results of the filter when we
are on overload or near overload capabilities. Although we are on a distributed environment, and request go to
different object servers, there is a net bottleneck on the proxy, so this is a high demanding scenario.
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Figure 21: 100 MB/s / 20 MB/s bandwidth assignments (overloaded).
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Figure 22: 50 MB/s / 50 MB/s bandwidth assignments.

In figure 21a we are running ssbench for two tenants and requesting 100Mb/s and 20Mb/s respectively. The
figure shows the timeline of the instantaneous obtained BW per tenant. We obtain a sharp behaviour due to
the overloaded setting. Looking into detail the ECDF plot in figure 21b, data can be read the following way:
tenant 1 obtains more than 100 MB/s for the 50% of the points, and tenant 2 obtains more than 20 MB/s for the
99% of the points. We should note that we obtain more bandwidth for tenant 2 because the kernel sees that the
disk is idle (for example, one server may serve only tenant 2 for a period of time due to request distribution). If
Swift could move request from one server to another, tenant 1 could use that spare disk, but this is not possible.
Finally, the data has high chances to be delayed by the network in this scenario.

In the second experiment with a near overloaded bandwidth assignation requests we try to see how the
system behaves when we assign the same BW to two tenants. In this case we will assign 50 MB/s to each
tenant and, as we can see in figures 22a and 22b, we obtain a similar behaviour for each tenant (as expected).
We obtain bandwidth below 50 MB/s for 15% of the points and if we check for the 0.5 value we obtain around
75 MB/s for both tenants, so spare bandwidth is distributed evenly in this case (good distribution of requests,
plus good distribution by the kernel of the spare bandwidth).

The last and most extreme experiment is pushing the needed BW to 100 MB/s for each tenant. As we can
see in figure 23, the two curves are similar (it has more differences than the 50 / 50 due to the proxy overload).
We did not get the requested bandwidth in mean as the network limits it to 120 MB/s, but we obtain 60 MB/s
per tenant (1/2 of the theoretical maximum of the network) for more than the 63% of the points.

Medium bandwidth differentiation requests On this subsection we explore the results when we ask normal
values that can be fulfilled by the different object servers. In this case we set lower BW needs in order to
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Figure 23: 100 / 100 MB/s bandwidth differentiation ECDF comparison.
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Figure 24: 50 MB/s / 20 MB/s bandwidth assignement (normal load, may hit HDD maximum performance).

avoid bottleneck problems in the proxy and get a smoother and better performance. To do that, the sum of the
requested BW is not going to be over 10 GbE (120 MB/s).

In this experiment, we will assign 50 MB/s for one tenant and 20 MB/s for the other tenant. We can observe
in figure 24a that normally the tenant 1 is always obtaining a bit more of bandwidth than tenant 2. As we can
analyse in figure 24b we obtain more than 50 MB/s for the 75% of the points and more than 20 MB/s for the
second tenant in more than 99% of the points. Data and request distribution has a high effect here, as we can
see in figure 24a at the 50 seconds point. Tenant 2 obtains the requested bandwidth but tenant 1 obtains less
breaking the SLO, at this point tenant 2 does not share the object server while tenant 1 has all its load at the same
object server, dropping the performance by 10 MB/s per stream from the maximum of 70 MB/s. Repeating the
experiment (as we will see on the interferences section) we may avoid this situation, but we decided to put it as
it is a typical scenario that may happen as requests can not be moved or cancelled in the server side.

For the last experiment we will set very low bandwidth to each tenant (20 MB/s and 10 MB/s respectively)
to see how the system behaves. In figure 25a we can see that if we do not overload the system the performance
depends on how the requests are distributed among the different object-servers, as we can obtain better spare
bandwidth utilization depending on how many streams are in each object server. In figure 25b, we can observe
how we obtain more than the requested bandwidth for almost 99% of the points, having an average value of 60
MB/s for tenant 1 and 30 MB/s for tenant 2.

Interferences study On this subsection we explore the results of the two Bandwidth differentiation filters
when we have a process doing I/O interferences (sustained 10 or 20 MB/s). This interferences are artificially
generated by a simple python program that loops a file and reads it at a given bandwidth rate. As the interfer-
ences are run by python, they are automatically tagged by the kernel as Best Effort 4, so as IO Priorities move
the scheduling point to the kernel and switch priorities of requests between Best Effort 0 and Idle, we expect
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Figure 25: 20 MB/s / 10 MB/s bandwidth assignment (low load).
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Figure 26: 50 MB/s / 20 MB/s bandwidth assignment with a 10 MB/s sustained I/O interference.

that the effect of such interferences is reduced (in the cases we need the bandwidth to fulfill a requirement).
In this experiments we will do a medium bandwidth differentiation as before, we will request 50 MB/s for

one tenant and 20 MB/s for the other tenant, and add on top of it sustained I/O interferences of 10 MB/s and 20
MB/s.

For the first experiment 10 MB/s interferences are generated. As we can see in figure 26a those interferences
do not affect too much (compared to figure 24a). The ECDF plots (figure 26b) shows that we fulfill for the
75% of the points the 50 MB/s request and for all the points the 20 MB/s request. As we said before, this
execution (more complex than the simple 50/20 without interferences) had distributed better the requests so the
bandwidth assignment is fulfilled better than in the experiment without interferences (Figure 24b) as it can be
observed in the timeline.

In the second experiment we will set the bandwidth of the interferences to 20 MB/s. In this scenario, we
can see in the ECDF plot 27) how we obtain more than 50 MB/s for the 75 % of the points and 20 MB/s for
more than 75 % of the points. Another time, despite the fact that we have interferences, the results due to the
distribution of data and requests produces that the method works better than the experiment presented without
interferences (Figure 24b).

13.4 Bandwidth differentiation effect inside an object server

In this small experiment, we will show the effect of the Swift modification and the bandwidth differentiation
with respect the original Swift. We use only an object server and we configure the load with 300 MB objects,
and 3 tenants.
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Figure 27: 50 MB/s / 20 MB/s bandwidth assignment ECDF with 20 MB/s sustained I/O interference.

Experiment Tenant 1 Tenant 2 Tenant 3 Total BW
No BW Diff 8±0,1 8±0,1 7,9±0,1 23,95
Max Priority: T1 101,8±0,6 0±0 0±0 101,80
BW Diff: 50/− /− 67,4±4,2 4,8±0,6 4,7±0,5 76,85
BW Diff: 70/− /− 78,2±2,5 4,7±1,5 4,7±1,5 87,51
BW Diff: 25/25/− 32±5,1 30,4±5,4 3,9±0,7 66,32
BW Diff: 15/20/15 16,6±1,7 24,6±4,3 17±2,1 58,13
Original 7,7±0,3 7,7±0,3 7,7±0,3 23,15

Table 13.4a: Bandwidth differentiation using HDDs. Numbers are MB/s. Includes 95% confidence interval.

Table 13.4a presents the results of different bandwidth allocations, including no allocation and the original
Swift. Here we obtain better performance, even without bandwidth allocation, due to a better scheduler be-
haviour as we have explored in the previous subsection. However, we achieve better disk performance when
we offer different bandwidth at each tenant due to a more bursty and a behaviour prone to merge I/O. Observing
the Max Priority line (we give infinite bandwidth to one tenant), it is interesting to note that we did not manage
to get the Tenant 2 and Tenant 3 objects due to timeouts on the client side. On this situation, the client should
request the object again and the proxy server will move it to another server. With the table results is easy to
observe that the concept of "maximum bandwidth" or "maximum throughput" is hard to define on HDDs due
to its dependency on the workload, thus having controls that use that concept as a metric or to distribute objects
will produce wrong results as the "maximum" can not be predicted or calculated accurately.

13.5 Discussion of results

The bandwidth differentiation kernel method does not need specific configurations once it is installed. However,
Swift needs to be modified in order to redirect each stream (object request) to its own thread (which removes
two configuration parameters). Additionally, it does not support directly (without a kernel modification to tag
write request with the original process id) to track PUT requests using the same methodology. On the other hand
has several benefits, allows to share automatically the spare bandwidth from the disk, control the priority per
chunk (64 KB) and it is able to avoid interferences. Other benefits come from a better I/O scheduler interaction,
like an HDD increased performance due to the reduction of seeks, and the reduction of the number of I/O
scheduling points to one in the kernel.

About the different results obtained, it has been clear in the 50 / 20 with and without interferences that the
results depend on how the requests and data is distributed. So if a set of requests of one tenant go to a single
object server, the HDD will be overloaded (each parallel request reduces performance by 10-15 MB/s) and the
bandwidth will not be able to be fulfilled on that moment. Despite this, only the most demanding scenario
evaluated (100/100, which is over the network bandwidth of 10GbE) is not achieving the requested bandwidth
for more than the 50% of the points.
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We include, for reference, results with a single node object server that demonstrates how the modification of
Swift, along the bandwidth differentiation filter, show better performance on disks and why is important to do
not relay on methods that define a maximum throughput of a HDD because it highly depends on the workload
and how the I/O scheduler sends requests.

14 Appendix 2: Crystal Controller API
The next table summarizes the REST methods of Crystal Controller API. For further details and examples, refer
to the documentation10.

REST Call Description HTTP Method URL

Filters
List filters GET /filters
Create a filter POST /filters
Upload filter data PUT /filters/:filter_id/data
Delete a filter DELETE /filters/:filter_id
Get filter metadata GET /filters/:filter_id
Update filter metadata PUT /filters/:filter_id
Deploy a filter to a project PUT /filters/:project_id/deploy/filter_id
Deploy a filter to a project and a container PUT /filters/:project_id/:container/deploy/filter_id
Undeploy a filter from a project PUT /filters/:project_id/undeploy/filter_id
Undeploy a filter from a project and a container PUT /filters/:project_id/:container/undeploy/filter_id

Dependencies
Create a dependency POST /filters/dependencies
Upload dependency data PUT /filters/dependencies/:dep_id/data
Delete a Dependency DELETE /filters/dependencies/:dep_id
Get Dependency metadata GET /filters/dependencies/:dep_id
List Dependencies GET /filters/dependencies
Update Dependency metadata PUT /filters/dependencies/:dep_id
Deploy Dependency PUT /filters/dependencies/:project_id/deploy/:dep_id
Undeploy Dependency PUT /filters/dependencies/:project_id/undeploy/:dep_id
List deployed Dependencies of a project GET /filters/dependencies/:project_id/deploy

Workload metrics
Add a workload metric POST /registry/metrics
Get all workload metrics GET /registry/metrics
Update a workload metric PUT /registry/metrics/:metric_name
Get metric metadata GET /registry/metrics/:metric_name
Delete a workload metric DELETE /registry/metrics/:metric_name

10https://github.com/Crystal-SDS/controller
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Filters registry
Register a filter POST /registry/filters
Get all registered filters GET /registry/filters
Update a registered filter PUT /registry/filters/:filter_name
Get registered filter metadata GET /registry/filters/:filter_name
Delete a registered filter DELETE /registry/filters/:filter_name

Projects group
Add a projects group POST /registry/gtenants
Get all projects groups GET /registry/gtenants
Get projects of a group GET /registry/gtenants/:group_id
Update members of a projects group PUT /registry/gtenants/:group_id
Delete a projects group DELETE /registry/gtenants/:group_id
Delete a member of a projects group DELETE /registry/gtenants/:group_id/tenants/:project_id

Object type
Create an object type POST /registry/object_type
Get all object types GET /registry/object_type
Get extensions of an object type GET /registry/object_type/:object_type_name
Update extensions of an object type PUT /registry/object_type/:object_type_name
Delete an object type DELETE /registry/object_type/:object_type_name

Metric modules
Upload a metric module POST /registry/metric_module/data
Get all metrics modules GET /registry/metric_module
Get a metric module GET /registry/metric_module/:metric_module_id
Update a metric module PUT /registry/metric_module/:metric_module_id
Delete a metric module DELETE /registry/metric_module/:metric_module_id

DSL Policies
List all static policies GET /registry/static_policy
Add a static policy POST /registry/static_policy
Get a static policy GET /registry/static_policy/:project_policy_id
Update a static policy PUT /registry/static_policy/:project_policy_id
Delete a static policy DELETE /registry/static_policy/:project_policy_id
List all dynamic policies GET /registry/dynamic_policy
Add a dynamic policy POST /registry/dynamic_policy
Delete a dynamic policy DELETE /registry/dynamic_policy/:policy_id

SLA Info for BW differentiation
Get SLA info about all projects GET /bw/slas
Create a SLA for the selected project and policy POST /bw/slas
Get SLA info about a project and a policy GET /bw/sla/:project_and_policy_id
Edit a SLA for the selected project and policy PUT /bw/sla/:project_and_policy_id
Delete a SLA for the selected project and policy DELETE /bw/sla/:project_and_policy_id

Swift calls
Enable SDS for a project POST /swift/tenants
Get a storage policies list GET /swift/storage_policies
Create a new storage policy POST /swift/spolicies
Obtain the locality of a project/container/object GET /swift/locality/:project/:container/:swift_object

15 Appendix 3: Crystal Development VM
There is a development virtual machine image available for Crystal. This VM emulates running a four node
Swift cluster together with Keystone, Storlets and Crystal controller and middlewares.

The VM is accessible at ftp://ast2-deim.urv.cat/s2caio_vm/.
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Glossary

Container (object storage): A container organizes and stores objects in Object Storage. Similar to the concept
of a Linux directory but cannot be nested.

Domain-specific language (DSL): A computer language specialized to a particular application domain.

Logical Volume Manager (LVM): A device mapper target that provides logical volume management for the
Linux kernel.

MD RAID: Also called Linux software RAID, makes the use of RAID possible without a hardware RAID
controller.

Message Oriented Middleware (MOM): A software or hardware infrastructure supporting sending and re-
ceiving messages between distributed systems.

MOM broker: An intermediary program module that translates a message from the formal messaging protocol
of the sender to the formal messaging protocol of the receiver. MOM brokers typically provide content and
topic-based message routing using the publish/subscribe pattern.

Storage provisioning: The process of assigning storage, usually in the form of server disk drive space, in order
to optimize the performance of a storage area network.

Storage tiering: the process of assigning different categories of data to various types of storage media to reduce
total storage cost. Tiers are determined by performance and cost of the media, and data is ranked by how often it
is accessed. Tiered storage policies place the most frequently accessed data on the highest performing storage.
Rarely accessed data goes on low-performance, cheaper storage.

Tenant: represent the base unit of “ownership” in OpenStack, in that all resources in OpenStack should be
owned by a specific tenant.
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